cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A088994 Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.

Original entry on oeis.org

1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003

Keywords

Comments

a(n) is the number of n-permutations composed only of odd cycles of distinct length. - Geoffrey Critzer, Mar 08 2013
Also the number of permutations p of [n] with unique (functional) square root, i.e., there exists a unique permutation g such that g^2 = p. - Keith J. Bauer, Jan 08 2024

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
  • PARI
    {a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */

Formula

E.g.f.: Product_{m >= 1} (1+x^(2*m-1)/(2*m-1)). - Vladeta Jovovic, Nov 05 2003
a(n) ~ exp(-gamma/2) * n! / sqrt(2*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
a(n) = n! - A088335(n). - Alois P. Heinz, Jan 27 2020

Extensions

More terms from Vladeta Jovovic, Nov 03 2003
a(0)=1 prepended by Seiichi Manyama, Nov 01 2017

A294506 E.g.f.: 1/Product_{k>0} (1-x^(2*k-1)/(2*k-1)).

Original entry on oeis.org

1, 1, 2, 8, 32, 184, 1184, 9008, 74752, 726528, 7583232, 87931392, 1092516864, 14863589376, 215094226944, 3358032635904, 55181218873344, 970561417248768, 17945595514847232, 351221170194874368, 7186120683011702784, 155103171658691641344
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1/Product[(1-x^(2*k-1)/(2*k-1)), {k, 1, Floor[nmax/2] + 1}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 02 2017 *)

Formula

a(n) ~ 2*exp(-gamma/2) * sqrt(2*n) * n! / Pi, where gamma is the Euler-Mascheroni constant A001620 [Lehmer, 1972]. - Vaclav Kotesovec, Jul 23 2019

A326755 E.g.f.: Product_{k>=1} 1/(1 - x^(3*k-1)/(3*k-1)).

Original entry on oeis.org

1, 0, 1, 0, 6, 24, 90, 504, 7560, 18144, 485352, 4626720, 32033232, 516559680, 9142044912, 64700161344, 1804378343040, 29722011830784, 308081755013760, 8202581858225664, 184073277074529024, 2067986628774743040, 75069447974837132544, 1673053361596502645760
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 23 2019

Keywords

Comments

In the article by Lehmer, Theorem 7, p. 387, case b <> 0 and b <> 1, correct formula is W_n(S_a,b) ~ a^(-1/a) * exp(-gamma/a) * (Gamma((b-1)/a) / (Gamma(b/a) * Gamma(1/a))) * n^(1/a - 1).

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[(1-x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 3^(1/6) * exp(-gamma/3) * Gamma(1/3) * n! / (2*Pi*n^(2/3)).
a(n) ~ exp(-gamma/3) * n! / (3^(1/3) * Gamma(2/3) * n^(2/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.

A326756 E.g.f.: Product_{k>=1} 1/(1 - x^(3*k-2)/(3*k-2)).

Original entry on oeis.org

1, 1, 2, 6, 30, 150, 900, 7020, 58680, 528120, 5644080, 63510480, 769610160, 10483933680, 150733677600, 2272680828000, 37752297264000, 653710445308800, 11839468023187200, 231623795388268800, 4723930089495302400, 99779582243860358400, 2249431677071465356800
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[(1-x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 3^(5/3) * exp(-gamma/3) * n^(1/3) * n! / Gamma(1/3)^2, where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function [Lehmer, 1972]. - Vaclav Kotesovec, Jul 23 2019

A087639 E.g.f.: Product_{m >= 1} (1+x^(2*m)/(2*m)) (even powers only).

Original entry on oeis.org

1, 1, 6, 210, 8400, 740880, 88814880, 15217282080, 3319002086400, 992431440000000, 351841557779712000, 156995673442223616000, 82429416503416958976000, 52017974139195896832000000, 37547796668359538444083200000, 31987697744989345038846566400000
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003

Keywords

Comments

Number of permutations of 2*n elements with distinct cycle lengths and without odd cycles. - Vladeta Jovovic, Aug 17 2004

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`((i/2)*(i/2+1)n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..17);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[Product[1 + x^(2*k)/(2*k), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Jul 23 2019 *)

Formula

a(n) ~ 2*exp(-gamma/2) * (2*n)! / (Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019

Extensions

More terms from Christian G. Bower, Jan 06 2006

A326779 E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-1)/(4*k-1)).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 80, 720, 0, 13440, 172800, 3628800, 5913600, 98841600, 4420915200, 92559667200, 110702592000, 6012444672000, 234205087334400, 6616915329024000, 13708373852160000, 771938716483584000, 40374130262409216000, 1172555787961958400000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 24 2019

Keywords

Comments

In the article by Lehmer, Theorem 7, p. 387, case b <> 0 and b <> 1, correct formula is W_n(S_a,b) ~ a^(-1/a) * exp(-gamma/a) * (Gamma((b-1)/a) / (Gamma(b/a) * Gamma(1/a))) * n^(1/a - 1), where gamma is the Euler-Mascheroni constant (A001620) and Gamma() is the Gamma function.

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[(1-x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ exp(-gamma/4) * n! / (2 * sqrt(Pi) * n^(3/4)), where gamma is the Euler-Mascheroni constant A001620.

A326780 E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-3)/(4*k-3)).

Original entry on oeis.org

1, 1, 2, 6, 24, 144, 864, 6048, 48384, 475776, 4902912, 53932032, 647184384, 8892398592, 126430875648, 1906924529664, 30510792474624, 539606261956608, 9890452422918144, 188459240926150656, 3773077461736095744, 81667528704634650624, 1819516013302975561728
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 24 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[(1-x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 2^(7/2) * exp(-gamma/4) * n^(1/4) * n! / Gamma(1/4)^2, where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function [Lehmer, 1972].
Showing 1-7 of 7 results.