A088994
Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.
Original entry on oeis.org
1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003
-
b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> b(n, n-1+irem(n, 2)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 01 2017
-
nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
-
{a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */
A294506
E.g.f.: 1/Product_{k>0} (1-x^(2*k-1)/(2*k-1)).
Original entry on oeis.org
1, 1, 2, 8, 32, 184, 1184, 9008, 74752, 726528, 7583232, 87931392, 1092516864, 14863589376, 215094226944, 3358032635904, 55181218873344, 970561417248768, 17945595514847232, 351221170194874368, 7186120683011702784, 155103171658691641344
Offset: 0
-
nmax = 30; CoefficientList[Series[1/Product[(1-x^(2*k-1)/(2*k-1)), {k, 1, Floor[nmax/2] + 1}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 02 2017 *)
A326755
E.g.f.: Product_{k>=1} 1/(1 - x^(3*k-1)/(3*k-1)).
Original entry on oeis.org
1, 0, 1, 0, 6, 24, 90, 504, 7560, 18144, 485352, 4626720, 32033232, 516559680, 9142044912, 64700161344, 1804378343040, 29722011830784, 308081755013760, 8202581858225664, 184073277074529024, 2067986628774743040, 75069447974837132544, 1673053361596502645760
Offset: 0
-
nmax = 25; CoefficientList[Series[1/Product[(1-x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326756
E.g.f.: Product_{k>=1} 1/(1 - x^(3*k-2)/(3*k-2)).
Original entry on oeis.org
1, 1, 2, 6, 30, 150, 900, 7020, 58680, 528120, 5644080, 63510480, 769610160, 10483933680, 150733677600, 2272680828000, 37752297264000, 653710445308800, 11839468023187200, 231623795388268800, 4723930089495302400, 99779582243860358400, 2249431677071465356800
Offset: 0
-
nmax = 25; CoefficientList[Series[1/Product[(1-x^(3*k-2)/(3*k-2)), {k, 1, Floor[nmax/3] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!
A087639
E.g.f.: Product_{m >= 1} (1+x^(2*m)/(2*m)) (even powers only).
Original entry on oeis.org
1, 1, 6, 210, 8400, 740880, 88814880, 15217282080, 3319002086400, 992431440000000, 351841557779712000, 156995673442223616000, 82429416503416958976000, 52017974139195896832000000, 37547796668359538444083200000, 31987697744989345038846566400000
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
-
b:= proc(n, i) option remember; `if`((i/2)*(i/2+1)n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..17); # Alois P. Heinz, Nov 01 2017
-
nmax = 20; Table[(CoefficientList[Series[Product[1 + x^(2*k)/(2*k), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Jul 23 2019 *)
A326779
E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-1)/(4*k-1)).
Original entry on oeis.org
1, 0, 0, 2, 0, 0, 80, 720, 0, 13440, 172800, 3628800, 5913600, 98841600, 4420915200, 92559667200, 110702592000, 6012444672000, 234205087334400, 6616915329024000, 13708373852160000, 771938716483584000, 40374130262409216000, 1172555787961958400000
Offset: 0
-
nmax = 25; CoefficientList[Series[1/Product[(1-x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326780
E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-3)/(4*k-3)).
Original entry on oeis.org
1, 1, 2, 6, 24, 144, 864, 6048, 48384, 475776, 4902912, 53932032, 647184384, 8892398592, 126430875648, 1906924529664, 30510792474624, 539606261956608, 9890452422918144, 188459240926150656, 3773077461736095744, 81667528704634650624, 1819516013302975561728
Offset: 0
-
nmax = 25; CoefficientList[Series[1/Product[(1-x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!
Showing 1-7 of 7 results.
Comments