cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A007837 Number of partitions of n-set with distinct block sizes.

Original entry on oeis.org

1, 1, 1, 4, 5, 16, 82, 169, 541, 2272, 17966, 44419, 201830, 802751, 4897453, 52275409, 166257661, 840363296, 4321172134, 24358246735, 183351656650, 2762567051857, 10112898715063, 62269802986835, 343651382271526, 2352104168848091, 15649414071734847
Offset: 0

Views

Author

Keywords

Comments

Conjecture: the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Cf. A185895. - Peter Bala, Mar 17 2022

Examples

			From _Gus Wiseman_, Jul 13 2019: (Start)
The a(1) = 1 through a(5) = 16 set partitions with distinct block sizes:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}    {{1,2,3,4,5}}
                  {{1},{2,3}}  {{1},{2,3,4}}  {{1},{2,3,4,5}}
                  {{1,2},{3}}  {{1,2,3},{4}}  {{1,2},{3,4,5}}
                  {{1,3},{2}}  {{1,2,4},{3}}  {{1,2,3},{4,5}}
                               {{1,3,4},{2}}  {{1,2,3,4},{5}}
                                              {{1,2,3,5},{4}}
                                              {{1,2,4},{3,5}}
                                              {{1,2,4,5},{3}}
                                              {{1,2,5},{3,4}}
                                              {{1,3},{2,4,5}}
                                              {{1,3,4},{2,5}}
                                              {{1,3,4,5},{2}}
                                              {{1,3,5},{2,4}}
                                              {{1,4},{2,3,5}}
                                              {{1,4,5},{2,3}}
                                              {{1,5},{2,3,4}}
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2008
    # second Maple program:
    A007837 := proc(n) option remember; local k; `if`(n = 0, 1,
    add(binomial(n-1, k-1) * A182927(k) * A007837(n-k), k = 1..n)) end:
    seq(A007837(i),i=0..24); # Peter Luschny, Apr 25 2011
  • Mathematica
    nn=20;p=Product[1+x^i/i!,{i,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[p,{x,0,nn}],x],1]  (* Geoffrey Critzer, Sep 22 2012 *)
    a[0]=1; a[n_] := a[n] = Sum[(n-1)!/(n-k)!*DivisorSum[k, -#*(-#!)^(-k/#)&]* a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Vladeta Jovovic *)
  • PARI
    {my(n=20); Vec(serlaplace(prod(k=1, n, (1+x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Dec 21 2017

Formula

E.g.f.: Product_{m >= 1} (1+x^m/m!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} (-d)*(-d!)^(-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 13 2002
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Christian G. Bower
a(0)=1 prepended by Alois P. Heinz, Aug 29 2015

A007841 Number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Original entry on oeis.org

1, 1, 3, 11, 56, 324, 2324, 18332, 167544, 1674264, 18615432, 223686792, 2937715296, 41233157952, 623159583552, 10008728738304, 171213653641344, 3092653420877952, 59086024678203264, 1185657912197967744, 25015435198774723584, 552130504313534175744
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    p := product(1/(1-x^m/m), m=1..100):
    s := series(p,x,100):
    for i from 0 to 100 do printf(`%.0f,`,i!*coeff(s,x,i)) od:
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (i-1)!^j*b(n-i*j, i-1)*multinomial(n, n-i*j, i$j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 21 2014
  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
    nmax = 25; CoefficientList[Series[Exp[Sum[PolyLog[j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
  • Maxima
    R(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 09 2014 */
  • PARI
    N=66; q='q+O('q^N);
    f=1/prod(n=1,N, 1-1/n*q^n );
    egf=serlaplace(f);
    Vec(egf)
    /* Joerg Arndt, Oct 06 2012 */
    

Formula

E.g.f.: prod{m >= 1} 1/(1-x^m/m).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(1-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 14 2002
a(n) = R(n,1), R(n,m) = R(n,m+1)+binomial(n,m)*(m-1)!*R(n-m,m), R(n,n)=(n-1)!, R(n,m)=0 for nVladimir Kruchinin, Sep 09 2014
a(n) ~ c * n! * n, where c = exp(-gamma) = 0.56145948..., where gamma is the Euler-Mascheroni constant A001620 [Lehmer, 1972]. - Vaclav Kotesovec, Mar 05 2016
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018

Extensions

More terms from James Sellers, Jan 09 2001
Prepended a(0) = 1, Joerg Arndt, Oct 06 2012

A080130 Decimal expansion of exp(-gamma).

Original entry on oeis.org

5, 6, 1, 4, 5, 9, 4, 8, 3, 5, 6, 6, 8, 8, 5, 1, 6, 9, 8, 2, 4, 1, 4, 3, 2, 1, 4, 7, 9, 0, 8, 8, 0, 7, 8, 6, 7, 6, 5, 7, 1, 0, 3, 8, 6, 9, 2, 5, 1, 5, 3, 1, 6, 8, 1, 5, 4, 1, 5, 9, 0, 7, 6, 0, 4, 5, 0, 8, 7, 9, 6, 7, 0, 7, 4, 2, 8, 5, 6, 3, 7, 1, 3, 2, 8, 7, 1, 1, 5, 8, 9, 3, 4, 2, 1, 4, 3, 5, 8, 7, 6, 7, 3, 1
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

By Mertens's third theorem, lim_{k->oo} (H_{k-1}*Product_{prime p<=k} (1-1/p)) = exp(-gamma), where H_n is the n-th harmonic number. Let F(x) = lim_{n->oo} ((Sum_{k<=n} 1/k^x)*(Product_{prime p<=n} (1-1/p^x))) for real x in the interval 0 < x < 1. Consider the function F(s) of the complex variable s, but without the analytic continuation of the zeta function, in the critical strip 0 < Re(s) < 1. - Thomas Ordowski, Jan 26 2023

Examples

			0.56145948356688516982414321479088078676571...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.5 p. 29, 2.7 p. 117 and 5.4 p. 285.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(-EulerGamma(R)); // G. C. Greubel, Aug 28 2018
  • Maple
    evalf(exp(-gamma), 120);  # Alois P. Heinz, Feb 24 2022
  • Mathematica
    RealDigits[N[Exp[-EulerGamma], 200]][[1]] (* Arkadiusz Wesolowski, Aug 26 2012 *)
  • PARI
    default(realprecision, 100); exp(-Euler) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals lim inf_{n->oo} phi(n)*log(log(n))/n. - Arkadiusz Wesolowski, Aug 26 2012
From Alois P. Heinz, Dec 05 2018: (Start)
Equals lim_{n->oo} A322364(n)/(n*A322365(n)).
Equals lim_{n->oo} A322380(n)/A322381(n). (End)
Equals lim_{k->oo} log(k)*Product_{prime p<=k} (1-1/p). - Amiram Eldar, Jul 09 2020
Equals lim_{n->oo} A007838(n)/A000142(n). - Alois P. Heinz, Feb 24 2022
Equals Product_{k>=1} (1+1/k)*exp(-1/k). - Amiram Eldar, Mar 20 2022
Equals A001113^(-A001620). - Omar E. Pol, Dec 14 2022
Equals lim_{n->oo} (A001008(p_n-1)/A002805(p_n-1))*(A038110(n+1)/A060753(n+1)), where p_n = A000040(n). - Thomas Ordowski, Jan 26 2023

A088311 Number of sets of lists with distinct list sizes, cf. A000262.

Original entry on oeis.org

1, 1, 2, 12, 48, 360, 2880, 25200, 241920, 2903040, 36288000, 479001600, 7185024000, 112086374400, 1917922406400, 35307207936000, 669529276416000, 13516122267648000, 294509190463488000, 6568835422076928000, 155705728523304960000, 3882911605049917440000
Offset: 0

Views

Author

Vladeta Jovovic, Nov 05 2003

Keywords

Comments

a(n) also enumerates ordered pairs of permutation functions on n elements where f(g(x)) = g(g(f(x))). - Chad Brewbaker, Mar 27 2014

Crossrefs

Other ordered permutation function pair relations are A000012, A000085, A000142, A001044, A053529.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( (&*[1+x^j: j in [1..m+2]]) ))); // G. C. Greubel, Dec 14 2022
    
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> n!*b(n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 15 2018
  • Mathematica
    nn = 19; Drop[ Range[0, nn]! CoefficientList[ Series[ Product[1 + x^i, {i,nn}], {x,0,nn}], x], 0] (* Geoffrey Critzer, Aug 05 2013; adapted to new offset by Vincenzo Librandi, Mar 28 2014 *)
    nmax = 20; CoefficientList[Series[Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(eta(x^2)/eta(x))) \\ Joerg Arndt, Aug 06 2013
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1) #  Peter Luschny's code of A000009 and A166861
    b = EulerTransform(a)
    [factorial(n)*b(n) for n in range(41)] # G. C. Greubel, Dec 14 2022

Formula

E.g.f: Product_{m>0} (1+x^m).
a(n) = n! * A000009(n).

Extensions

Prepended a(0) = 1, Joerg Arndt, Aug 06 2013

A088994 Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.

Original entry on oeis.org

1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003

Keywords

Comments

a(n) is the number of n-permutations composed only of odd cycles of distinct length. - Geoffrey Critzer, Mar 08 2013
Also the number of permutations p of [n] with unique (functional) square root, i.e., there exists a unique permutation g such that g^2 = p. - Keith J. Bauer, Jan 08 2024

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
  • PARI
    {a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */

Formula

E.g.f.: Product_{m >= 1} (1+x^(2*m-1)/(2*m-1)). - Vladeta Jovovic, Nov 05 2003
a(n) ~ exp(-gamma/2) * n! / sqrt(2*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
a(n) = n! - A088335(n). - Alois P. Heinz, Jan 27 2020

Extensions

More terms from Vladeta Jovovic, Nov 03 2003
a(0)=1 prepended by Seiichi Manyama, Nov 01 2017

A305199 Expansion of e.g.f. Product_{k>=1} (1 + x^k/k)/(1 - x^k/k).

Original entry on oeis.org

1, 2, 6, 28, 152, 1008, 7756, 67688, 659424, 7123776, 84154224, 1079913888, 14962632384, 222447507072, 3531920599008, 59664827178048, 1067975819206656, 20192760528611328, 402169396496004864, 8414121277765679616, 184498963978904644608, 4231186653661629843456
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Comments

Exponential convolution of the sequences A007838 and A007841.

Crossrefs

Programs

  • Maple
    a:=series(mul((1+x^k/k)/(1-x^k/k),k=1..100),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k/k)/(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(1 + (-1)^(k + 1)) x^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (1 + (-1)^(k+1))*x^(j*k)/(k*j^k)).
a(n) ~ sqrt(Pi/2) * n^(n + 5/2) / exp(n + 2*gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 26 2019

A181541 E.g.f.: A(x) = Product_{n>=1} (1 + x^n/n)^n.

Original entry on oeis.org

1, 1, 2, 12, 54, 390, 3120, 28140, 290640, 3354960, 42561120, 586259520, 8806422240, 141680579040, 2446025662080, 44990666360640, 877867974023040, 18115179826423680, 394351821275892480, 9019730566889602560
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 54*x^4/4! + 390*x^5/5! + ...
A(x) = (1+x)*(1 + x^2/2)^2*(1 + x^3/3)^3*(1 + x^4/4)^4*(1 + x^5/5)^5*...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+x^k/k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 07 2020 *)
  • PARI
    {a(n)=n!*polcoeff(prod(m=1,n,(1+x^m/m+x*O(x^n))^m),n)}

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(-j)^(k-1))). - Ilya Gutkovskiy, Sep 12 2018

A294506 E.g.f.: 1/Product_{k>0} (1-x^(2*k-1)/(2*k-1)).

Original entry on oeis.org

1, 1, 2, 8, 32, 184, 1184, 9008, 74752, 726528, 7583232, 87931392, 1092516864, 14863589376, 215094226944, 3358032635904, 55181218873344, 970561417248768, 17945595514847232, 351221170194874368, 7186120683011702784, 155103171658691641344
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1/Product[(1-x^(2*k-1)/(2*k-1)), {k, 1, Floor[nmax/2] + 1}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 02 2017 *)

Formula

a(n) ~ 2*exp(-gamma/2) * sqrt(2*n) * n! / Pi, where gamma is the Euler-Mascheroni constant A001620 [Lehmer, 1972]. - Vaclav Kotesovec, Jul 23 2019

A309319 E.g.f.: 1/Product_{k>0} (1 - x^(2*k)/(2*k)) (even powers only).

Original entry on oeis.org

1, 1, 12, 300, 15960, 1232280, 157006080, 25418352960, 5859886032000, 1655203620470400, 604893737678630400, 261278195494386470400, 140231830875916632652800, 86107922772424330377600000, 63316800257542340301112320000, 52666943508290765740968161280000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[1/Product[(1 - x^(2*k)/(2*k)), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2 n + 1]], {n, 0, nmax}]

Formula

a(n) ~ exp(-gamma/2) * (2*n)! / sqrt(n) [Lehmer, 1972], where gamma is the Euler-Mascheroni constant A001620.

A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2018

Keywords

Comments

a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - Geoffrey Critzer, Feb 23 2022

Examples

			1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Formula

Limit_{n->infinity} a(n)/A322381(n) = exp(-gamma) = A080130.
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022
Showing 1-10 of 46 results. Next