A088994
Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.
Original entry on oeis.org
1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003
-
b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
b(n-i, i-2)*binomial(n, i))))
end:
a:= n-> b(n, n-1+irem(n, 2)):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 01 2017
-
nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
-
{a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */
A249588
G.f.: Product_{n>=1} 1/(1 - x^n/n^2) = Sum_{n>=0} a(n)*x^n/n!^2.
Original entry on oeis.org
1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, 229357803456, 23289083584704, 2851295406197184, 414855423241758720, 70695451937596732416, 13958230719814052097024, 3159974451734082088897536, 813380358295803762813321216, 236172126115504055456155975680
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 49*x^3/3!^2 + 856*x^4/4!^2 +...
where
A(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+b(n-i, min(i, n-i))*((i-1)!*binomial(n, i))^2 ))
end:
a:= n-> b(n$2):
seq(a(n), n=0..17); # Alois P. Heinz, Jul 27 2023
-
b[k_] := b[k] = DivisorSum[k, #^(1-2*k/#) &]; a[0] = 1; a[n_] := a[n] = Sum[n!*(n-1)!/(n-k)!^2*b[k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 23 2015, adapted from PARI *)
Table[n!^2 * SeriesCoefficient[Product[1/(1 - x^m/m^2), {m, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 05 2016 *)
-
{a(n)=n!^2*polcoeff(prod(k=1, n, 1/(1-x^k/k^2 +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
-
/* Using logarithmic derivative: */
{b(k) = sumdiv(k,d, d^(1-2*k/d))}
{a(n) = if(n==0,1,sum(k=1,n, n!*(n-1)!/(n-k)!^2 * b(k) * a(n-k)))}
for(n=0,20,print1(a(n),", "))
A249078
E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k).
Original entry on oeis.org
1, 1, 4, 17, 96, 595, 4516, 37104, 351020, 3604001, 41007240, 502039444, 6703536516, 95376507135, 1459072099824, 23677731306350, 408821193129564, 7443839953433701, 143258713990271960, 2893053522512463984, 61396438056305204020, 1362146168353191078195, 31605702195327725326560
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 96*x^4/4! + 595*x^5/5! +...
such that A(x) = exp(1)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 1.7182818284590452...
q(1) = 1.7182818284590452...
q(2) = 4.1548454853771357...
q(3) = 12.901100113049497...
q(4) = 56.223782393706533...
q(5) = 285.72331242073065...
q(6) = 1801.2869693388211...
q(7) = 12727.542479311217...
q(8) = 104411.81066734227...
q(9) = 947120.40724315491...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(1)*1 - q(0) = 1;
a(1) = exp(1)*1 - q(1) = 1;
a(2) = exp(1)*3 - q(2) = 4;
a(3) = exp(1)*11 - q(3) = 17;
a(4) = exp(1)*56 - q(4) = 96;
a(5) = exp(1)*324 - q(5) = 595;
a(6) = exp(1)*2324 - q(6) = 4516;
a(7) = exp(1)*18332 - q(7) = 37104;
a(8) = exp(1)*167544 - q(8) = 351020; ...
-
\p100 \\ set precision
{P=Vec(serlaplace(prod(k=1,31,1/(1-x^k/k +O(x^31)))));} \\ A007841
{Q=Vec(serlaplace(sum(n=1,201,prod(k=1,n,1./(k-x^k +O(x^31))))));}
for(n=0,30,print1(round(exp(1)*P[n+1]-Q[n+1]),", "))
A305199
Expansion of e.g.f. Product_{k>=1} (1 + x^k/k)/(1 - x^k/k).
Original entry on oeis.org
1, 2, 6, 28, 152, 1008, 7756, 67688, 659424, 7123776, 84154224, 1079913888, 14962632384, 222447507072, 3531920599008, 59664827178048, 1067975819206656, 20192760528611328, 402169396496004864, 8414121277765679616, 184498963978904644608, 4231186653661629843456
Offset: 0
-
a:=series(mul((1+x^k/k)/(1-x^k/k),k=1..100),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[Product[(1 + x^k/k)/(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[Exp[Sum[Sum[(1 + (-1)^(k + 1)) x^(j k)/(k j^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
A294506
E.g.f.: 1/Product_{k>0} (1-x^(2*k-1)/(2*k-1)).
Original entry on oeis.org
1, 1, 2, 8, 32, 184, 1184, 9008, 74752, 726528, 7583232, 87931392, 1092516864, 14863589376, 215094226944, 3358032635904, 55181218873344, 970561417248768, 17945595514847232, 351221170194874368, 7186120683011702784, 155103171658691641344
Offset: 0
-
nmax = 30; CoefficientList[Series[1/Product[(1-x^(2*k-1)/(2*k-1)), {k, 1, Floor[nmax/2] + 1}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 02 2017 *)
A249474
E.g.f.: P(x)/exp(1) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k).
Original entry on oeis.org
1, 1, 2, 7, 30, 169, 1128, 8700, 76494, 753139, 8182188, 97131376, 1256860330, 17470791933, 261284377168, 4164406202270, 70677340199670, 1268718107324255, 24091289738163140, 480954355282406340, 10097484764045220626, 221918808641500960217, 5103937368681669463800
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 30*x^4/4! + 169*x^5/5! +...
such that A(x) = exp(-1)*P(x) + Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 1/(1-x) - 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) - 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +-...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 0.632120558828557678...
q(1) = 0.632120558828557678...
q(2) = 0.896361676485673035...
q(3) = 2.953326147114134462...
q(4) = 9.398751294399229990...
q(5) = 49.80706106045268780...
q(6) = 273.0481787175680446...
q(7) = 1956.034084445119360...
q(8) = 14858.00690837186767...
q(9) = 137211.6953065362928...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(-1)*1 + q(0) = 1;
a(1) = exp(-1)*1 + q(1) = 1;
a(2) = exp(-1)*3 + q(2) = 2;
a(3) = exp(-1)*11 + q(3) = 7;
a(4) = exp(-1)*56 + q(4) = 30;
a(5) = exp(-1)*324 + q(5) = 169;
a(6) = exp(-1)*2324 + q(6) = 1128;
a(7) = exp(-1)*18332 + q(7) = 8700;
a(8) = exp(-1)*167544 + q(8) = 76494; ...
-
\p100 \\ set precision
{P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
{Q=Vec(serlaplace(sum(n=1, 201, -(-1)^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
for(n=0, 30, print1(round(exp(-1)*P[n+1]+Q[n+1]), ", "))
A249593
G.f.: Product_{n>=1} 1/(1 - x^n/n^3) = Sum_{n>=0} a(n)*x^n/n!^3.
Original entry on oeis.org
1, 1, 9, 251, 16496, 2083824, 453803984, 156304214576, 80272385155584, 58631012094472704, 58713787327403063808, 78225670182020153384448, 135277046518915274471718912, 297374407080303931562525442048, 816367902369725640298981464096768
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2/2!^3 + 251*x^3/3!^3 + 16496*x^4/4!^3 +...
where
A(x) = 1/((1-x)*(1-x^2/2^3)*(1-x^3/3^3)*(1-x^4/4^3)*(1-x^5/5^3)*...).
-
Table[n!^3 * SeriesCoefficient[Product[1/(1 - x^m/m^3), {m, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 05 2016 *)
-
{a(n)=n!^3*polcoeff(prod(k=1, n, 1/(1-x^k/k^3 +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
-
/* Using logarithmic derivative: */
{b(k) = sumdiv(k, d, d^(1-3*k/d))}
{a(n) = if(n==0, 1, sum(k=1, n, n!^2*(n-1)!/(n-k)!^3 * b(k) * a(n-k)))}
for(n=0, 20, print1(a(n), ", "))
A294469
E.g.f.: 1/Product_{k>0} (1 - x^k/k)^k.
Original entry on oeis.org
1, 1, 4, 18, 114, 810, 7140, 68880, 766920, 9304680, 125086080, 1814015280, 28588356720, 481128888240, 8678237087520, 166041500264640, 3371031116893440, 72153115744469760, 1627441316510929920, 38500269726897538560, 954533425718494702080
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1-x^k/k)^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 01 2017 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1-x^k/k)^k)))
A309319
E.g.f.: 1/Product_{k>0} (1 - x^(2*k)/(2*k)) (even powers only).
Original entry on oeis.org
1, 1, 12, 300, 15960, 1232280, 157006080, 25418352960, 5859886032000, 1655203620470400, 604893737678630400, 261278195494386470400, 140231830875916632652800, 86107922772424330377600000, 63316800257542340301112320000, 52666943508290765740968161280000
Offset: 0
-
nmax = 20; Table[(CoefficientList[Series[1/Product[(1 - x^(2*k)/(2*k)), {k, 1, 2*nmax}], {x, 0, 2*nmax}], x]*Range[0, 2*nmax]!)[[2 n + 1]], {n, 0, nmax}]
A249475
E.g.f.: exp(2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 2^n/Product_{k=1..n} (k - x^k).
Original entry on oeis.org
1, 1, 5, 25, 156, 1048, 8400, 72384, 710184, 7519240, 87797880, 1098513880, 14945280640, 216079283040, 3352657547680, 55071779464352, 961293645943680, 17669716422651776, 342988501737128576, 6978772157389361280, 149123855108936024576, 3328674238745847019520
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 25*x^3/3! + 156*x^4/4! + 1048*x^5/5! +...
such that A(x) = exp(2)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} 2^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 2/(1-x) + 2^2/((1-x)*(2-x^2)) + 2^3/((1-x)*(2-x^2)*(3-x^3)) + 2^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 2^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 6.3890560989306502272...
q(1) = 6.3890560989306502272...
q(2) = 17.167168296791950681...
q(3) = 56.279617088237152499...
q(4) = 257.78714154011641272...
q(5) = 1346.0541760535306736...
q(6) = 8772.1663739148311280...
q(7) = 63072.176405596679965...
q(8) = 527808.01503923686167...
q(9) = 4851990.6204200261720...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(2)*1 - q(0) = 1;
a(1) = exp(2)*1 - q(1) = 1;
a(2) = exp(2)*3 - q(2) = 5;
a(3) = exp(2)*11 - q(3) = 25;
a(4) = exp(2)*56 - q(4) = 156;
a(5) = exp(2)*324 - q(5) = 1048;
a(6) = exp(2)*2324 - q(6) = 8400;
a(7) = exp(2)*18332 - q(7) = 72384;
a(8) = exp(2)*167544 - q(8) = 710184; ...
-
\p100 \\ set precision
{P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
{Q=Vec(serlaplace(sum(n=1, 201, 2^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
for(n=0, 30, print1(round(exp(2)*P[n+1]-Q[n+1]), ", "))
Showing 1-10 of 44 results.
Comments