A007841
Number of factorizations of permutations of n letters into cycles in nondecreasing length order.
Original entry on oeis.org
1, 1, 3, 11, 56, 324, 2324, 18332, 167544, 1674264, 18615432, 223686792, 2937715296, 41233157952, 623159583552, 10008728738304, 171213653641344, 3092653420877952, 59086024678203264, 1185657912197967744, 25015435198774723584, 552130504313534175744
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Vaclav Kotesovec, Graph - The asymptotic ratio
- A. Knopfmacher, J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
- D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388.
-
p := product(1/(1-x^m/m), m=1..100):
s := series(p,x,100):
for i from 0 to 100 do printf(`%.0f,`,i!*coeff(s,x,i)) od:
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(i-1)!^j*b(n-i*j, i-1)*multinomial(n, n-i*j, i$j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 21 2014
-
nmax = 25; CoefficientList[Series[1/Product[(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
nmax = 25; CoefficientList[Series[Exp[Sum[PolyLog[j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
-
R(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 09 2014 */
-
N=66; q='q+O('q^N);
f=1/prod(n=1,N, 1-1/n*q^n );
egf=serlaplace(f);
Vec(egf)
/* Joerg Arndt, Oct 06 2012 */
A249593
G.f.: Product_{n>=1} 1/(1 - x^n/n^3) = Sum_{n>=0} a(n)*x^n/n!^3.
Original entry on oeis.org
1, 1, 9, 251, 16496, 2083824, 453803984, 156304214576, 80272385155584, 58631012094472704, 58713787327403063808, 78225670182020153384448, 135277046518915274471718912, 297374407080303931562525442048, 816367902369725640298981464096768
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2/2!^3 + 251*x^3/3!^3 + 16496*x^4/4!^3 +...
where
A(x) = 1/((1-x)*(1-x^2/2^3)*(1-x^3/3^3)*(1-x^4/4^3)*(1-x^5/5^3)*...).
-
Table[n!^3 * SeriesCoefficient[Product[1/(1 - x^m/m^3), {m, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 05 2016 *)
-
{a(n)=n!^3*polcoeff(prod(k=1, n, 1/(1-x^k/k^3 +x*O(x^n))),n)}
for(n=0,20,print1(a(n),", "))
-
/* Using logarithmic derivative: */
{b(k) = sumdiv(k, d, d^(1-3*k/d))}
{a(n) = if(n==0, 1, sum(k=1, n, n!^2*(n-1)!/(n-k)!^3 * b(k) * a(n-k)))}
for(n=0, 20, print1(a(n), ", "))
A269791
G.f.: Product_{n>=1} 1/(1 - x^n/n^4) = Sum_{n>=0} a(n)*x^n/n!^4.
Original entry on oeis.org
1, 1, 17, 1393, 359200, 224991776, 291968881696, 701412781560352, 2873957814268080128, 18859650596161401139200, 188619789441121624152354816, 2761804817165898231731040301056, 57271995555712767650976765232545792, 1635810412682066454426684822491878391808
Offset: 0
-
Table[n!^4 * SeriesCoefficient[Product[1/(1 - x^k/k^4), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
-
{a(n)=n!^4*polcoeff(prod(k=1, n, 1/(1-x^k/k^4 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
A269793
G.f.: Product_{n>=1} 1/(1 - x^n/n^5) = Sum_{n>=0} a(n)*x^n/n!^5.
Original entry on oeis.org
1, 1, 33, 8051, 8259776, 25822962624, 200839327164224, 3375758721819353792, 110621043661751405543424, 6532189550762931700406452224, 653226327065916563182761815212032, 105203470361723800472334968046839365632, 26178104032796403698593899646317901702496256
Offset: 0
-
Table[n!^5 * SeriesCoefficient[Product[1/(1-x^k/k^5), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
-
{a(n)=n!^5*polcoeff(prod(k=1, n, 1/(1-x^k/k^5 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
A269794
G.f.: Product_{n>=1} 1/(1 - x^n/n^6) = Sum_{n>=0} a(n)*x^n/n!^6.
Original entry on oeis.org
1, 1, 65, 47449, 194444416, 3038449102976, 141766192358448256, 16678817447073033946240, 4372271021740050216976646144, 2323608852183697867526563204694016, 2323611343146528421975097303187359268864, 4116421685969107286571222251382158945547976704
Offset: 0
-
Table[n!^6 * SeriesCoefficient[Product[1/(1-x^k/k^6), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
-
{a(n)=n!^6*polcoeff(prod(k=1, n, 1/(1-x^k/k^6 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
A326864
G.f.: Product_{k>=1} (1 + x^k/k^2) = Sum_{n>=0} a(n)*x^n/n!^2.
Original entry on oeis.org
1, 1, 1, 13, 100, 1876, 57636, 2051316, 104640768, 6819033600, 576652089600, 57187381536000, 7057192160793600, 1014733052692300800, 172646881540527744000, 33848454886497227289600, 7637231669166956976537600, 1948418678155880277481881600
Offset: 0
a(n) ~ c * (n-1)!^2, where c = A156648 = Product_{k>=1} (1 + 1/k^2) = sinh(Pi)/Pi = 3.67607791037497772...
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 27 2023
-
nmax = 20; CoefficientList[Series[Product[(1+x^k/k^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^2
A249590
E.g.f.: BesselI(0,2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).
Original entry on oeis.org
1, 1, 6, 63, 1162, 31263, 1207344, 61719326, 4103067834, 341454828363, 34946904263560, 4304483416099530, 629558493157805370, 107728435291299602135, 21346960361800584031800, 4847223770735591212039818, 1250978551922243595690043914, 364052135715732457875255719691
Offset: 0
E.g.f.: 1 + x + 6*x^2/2!^2 + 63*x^3/3!^2 + 1162*x^4/4!^2 + 31263*x^5/5!^2 +...
such that A(x) = BesselI(0,2)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(4-x^2)) + 1/((1-x)*(4-x^2)*(9-x^3)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)*(25-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients q(n) in Q(x) = Sum_{n>=0} q(n)*x^n/n!^2 begin:
q(0) = 1.279585302336067267437204440811533...
q(1) = 1.279585302336067267437204440811533...
q(2) = 5.397926511680336337186022204057666...
q(3) = 48.69967981446729610442301759976513...
q(4) = 789.3250187996735809262470013346725...
q(5) = 19745.00072507184117617488656759887...
q(6) = 713288.6822890207712374724807435860...
q(7) = 34956701.28771539805703277298850790...
q(8) = 2239176303.370447012433955813571405...
q(9) = 181385849371.3820539848573249577420...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A249078 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = BesselI(0,2)*1 - q(0) = 1;
a(1) = BesselI(0,2)*1 - q(1) = 1;
a(2) = BesselI(0,2)*5 - q(2) = 6;
a(3) = BesselI(0,2)*49 - q(3) = 63;
a(4) = BesselI(0,2)*856 - q(4) = 1162;
a(5) = BesselI(0,2)*22376 - q(5) = 31263;
a(6) = BesselI(0,2)*842536 - q(6) = 1207344;
a(7) = BesselI(0,2)*42409480 - q(7) = 61719326;
a(8) = BesselI(0,2)*2782192064 - q(8) = 4103067834; ...
-
\p100 \\ set precision
{P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
{Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k^2-x^k +O(x^31))))))); }
for(n=0, 30, print1(round(besseli(0,2)*P[n+1]-Q[n+1]), ", "))
A249592
E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k/k).
Original entry on oeis.org
1, 1, 6, 64, 1192, 32360, 1257880, 64644520, 4315649600, 360332919360, 36979925855040, 4564758983929920, 668857835862650880, 114624254940995404800, 22742780483191398589440, 5169745984444274224143360, 1335478685859609449305006080, 388956774210908224056394014720
Offset: 0
E.g.f.: 1 + x + 6*x^2/2!^2 + 64*x^3/3!^2 + 1192*x^4/4!^2 + 32360*x^5/5!^2 +...
such that A(x) = exp(1)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k/k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(2-x^2/2)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)*(4-x^4/4)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)*(4-x^4/4)*(5-x^5/5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 1.718281828459045235360287471352662...
q(1) = 1.718281828459045235360287471352662...
q(2) = 7.591409142295226176801437356763312...
q(3) = 69.19580959449321653265408609628046...
q(4) = 1134.849245160942721468406075477879...
q(5) = 28464.27419359959618642179245898717...
q(6) = 1032370.298622570136419515164963586...
q(7) = 50636398.83839730972810740431058131...
q(8) = 3247132530.854165002836403983556004...
q(9) = 263126229989.7260044371780752021631...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A007841 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = exp(1)*1 - q(0) = 1;
a(1) = exp(1)*1 - q(1) = 1;
a(2) = exp(1)*5 - q(2) = 6;
a(3) = exp(1)*49 - q(3) = 64;
a(4) = exp(1)*856 - q(4) = 1192;
a(5) = exp(1)*22376 - q(5) = 32360;
a(6) = exp(1)*842536 - q(6) = 1257880;
a(7) = exp(1)*42409480 - q(7) = 64644520;
a(8) = exp(1)*2782192064 - q(8) = 4315649600; ...
-
\p100 \\ set precision
{P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
{Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k-x^k/k +O(x^31))))))); }
for(n=0, 30, print1(round(exp(1)*P[n+1]-Q[n+1]), ", "))
A249607
E.g.f.: BesselJ(0,2)*P(x) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} -(-1)^n/Product_{k=1..n} (k^2 - x^k).
Original entry on oeis.org
1, 1, 4, 37, 600, 15229, 554868, 27444786, 1770376080, 144306428161, 14507072762052, 1762845211827574, 254794661274061848, 43191427238728121445, 8488249087135630544628, 1914196040519793284483542, 491024013925643339847990144, 142153433027873627036756565313
Offset: 0
E.g.f.: 1 + x + 4*x^2/2!^2 + 37*x^3/3!^2 + 600*x^4/4!^2 + 15229*x^5/5!^2 +...
such that A(x) = BesselJ(0,2)*P(x) + Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} -(-1)^n/Product_{k=1..n} (k^2 - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) - 1/((1-x)*(4-x^2)) + 1/((1-x)*(4-x^2)*(9-x^3)) - 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)*(25-x^5)) -+...
We can illustrate the initial terms a(n) in the following manner.
The coefficients q(n) in Q(x) = Sum_{n>=0} q(n)*x^n/n!^2 begin:
q(0) = 0.776109220858764331948172545350051...
q(1) = 0.776109220858764331948172545350051...
q(2) = 2.880546104293821659740862726750256...
q(3) = 26.02935182207945226546045472215251...
q(4) = 408.3494930551022681476356988196439...
q(5) = 10219.21992593571069167230887475274...
q(6) = 366231.9585054598651822855036690508...
q(7) = 17949694.47982534876046938459857209...
q(8) = 1147468931.070477389192467314975593...
q(9) = 92955330843.11376518199210023477232...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A249588 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = BesselJ(0,2)*1 + q(0) = 1;
a(1) = BesselJ(0,2)*1 + q(1) = 1;
a(2) = BesselJ(0,2)*5 + q(2) = 4;
a(3) = BesselJ(0,2)*49 + q(3) = 37;
a(4) = BesselJ(0,2)*856 + q(4) = 600;
a(5) = BesselJ(0,2)*22376 + q(5) = 15229;
a(6) = BesselJ(0,2)*842536 + q(6) = 554868;
a(7) = BesselJ(0,2)*42409480 + q(7) = 27444786;
a(8) = BesselJ(0,2)*2782192064 + q(8) = 1770376080; ...
-
\p100 \\ set precision
{P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
{Q=Vec(serlaplace(serlaplace(sum(n=1, 201, -(-1)^n*prod(k=1, n, 1./(k^2-x^k +O(x^31))))))); }
for(n=0, 30, print1(round(besselj(0,2)*P[n+1]+Q[n+1]), ", "))
A336295
a(n) = (n!)^n * [x^n] Product_{k>=1} 1/(1 - x^k/k^n).
Original entry on oeis.org
1, 1, 5, 251, 359200, 25822962624, 141766192358448256, 83301485967496541735457536, 7013555995366382867427754604471779328, 109330254486209621988088555707809713786027354619904, 396335044092985772297627538614627390881554195217999599121962369024
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+b(n-i, min(n-i, i), k)*((i-1)!*binomial(n, i))^k))
end:
a:= n-> b(n$3):
seq(a(n), n=0..12); # Alois P. Heinz, Jul 27 2023
-
Table[(n!)^n SeriesCoefficient[Product[1/(1 - x^k/k^n), {k, 1, n}], {x, 0, n}], {n, 0, 10}]
Showing 1-10 of 12 results.
Comments