cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A007841 Number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Original entry on oeis.org

1, 1, 3, 11, 56, 324, 2324, 18332, 167544, 1674264, 18615432, 223686792, 2937715296, 41233157952, 623159583552, 10008728738304, 171213653641344, 3092653420877952, 59086024678203264, 1185657912197967744, 25015435198774723584, 552130504313534175744
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    p := product(1/(1-x^m/m), m=1..100):
    s := series(p,x,100):
    for i from 0 to 100 do printf(`%.0f,`,i!*coeff(s,x,i)) od:
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (i-1)!^j*b(n-i*j, i-1)*multinomial(n, n-i*j, i$j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 21 2014
  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
    nmax = 25; CoefficientList[Series[Exp[Sum[PolyLog[j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
  • Maxima
    R(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 09 2014 */
  • PARI
    N=66; q='q+O('q^N);
    f=1/prod(n=1,N, 1-1/n*q^n );
    egf=serlaplace(f);
    Vec(egf)
    /* Joerg Arndt, Oct 06 2012 */
    

Formula

E.g.f.: prod{m >= 1} 1/(1-x^m/m).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(1-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 14 2002
a(n) = R(n,1), R(n,m) = R(n,m+1)+binomial(n,m)*(m-1)!*R(n-m,m), R(n,n)=(n-1)!, R(n,m)=0 for nVladimir Kruchinin, Sep 09 2014
a(n) ~ c * n! * n, where c = exp(-gamma) = 0.56145948..., where gamma is the Euler-Mascheroni constant A001620 [Lehmer, 1972]. - Vaclav Kotesovec, Mar 05 2016
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018

Extensions

More terms from James Sellers, Jan 09 2001
Prepended a(0) = 1, Joerg Arndt, Oct 06 2012

A249593 G.f.: Product_{n>=1} 1/(1 - x^n/n^3) = Sum_{n>=0} a(n)*x^n/n!^3.

Original entry on oeis.org

1, 1, 9, 251, 16496, 2083824, 453803984, 156304214576, 80272385155584, 58631012094472704, 58713787327403063808, 78225670182020153384448, 135277046518915274471718912, 297374407080303931562525442048, 816367902369725640298981464096768
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 9*x^2/2!^3 + 251*x^3/3!^3 + 16496*x^4/4!^3 +...
where
A(x) = 1/((1-x)*(1-x^2/2^3)*(1-x^3/3^3)*(1-x^4/4^3)*(1-x^5/5^3)*...).
		

Crossrefs

Programs

  • Mathematica
    Table[n!^3 * SeriesCoefficient[Product[1/(1 - x^m/m^3), {m, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 05 2016 *)
  • PARI
    {a(n)=n!^3*polcoeff(prod(k=1, n, 1/(1-x^k/k^3 +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* Using logarithmic derivative: */
    {b(k) = sumdiv(k, d, d^(1-3*k/d))}
    {a(n) = if(n==0, 1, sum(k=1, n, n!^2*(n-1)!/(n-k)!^3 * b(k) * a(n-k)))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = Sum_{k=1..n} n!^2*(n-1)!/(n-k)!^3 * b(k) * a(n-k), where b(k) = Sum_{d|k} d^(1-3*k/d) and a(0) = 1 (after Vladeta Jovovic in A007841).
a(n) ~ c * n!^3, where c = Product_{k>=2} 1/(1-1/k^3) = 3*Pi/cosh(sqrt(3)*Pi/2) = 1.235488267746513477155075624616837... . - Vaclav Kotesovec, Mar 05 2016

Extensions

Name clarified by Vaclav Kotesovec, Mar 05 2016

A269791 G.f.: Product_{n>=1} 1/(1 - x^n/n^4) = Sum_{n>=0} a(n)*x^n/n!^4.

Original entry on oeis.org

1, 1, 17, 1393, 359200, 224991776, 291968881696, 701412781560352, 2873957814268080128, 18859650596161401139200, 188619789441121624152354816, 2761804817165898231731040301056, 57271995555712767650976765232545792, 1635810412682066454426684822491878391808
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^4 * SeriesCoefficient[Product[1/(1 - x^k/k^4), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
  • PARI
    {a(n)=n!^4*polcoeff(prod(k=1, n, 1/(1-x^k/k^4 +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * n!^4, where c = Product_{k>=2} 1/(1-1/k^4) = 4*Pi/sinh(Pi) = 4*A090986 = 1.08811621992853265180094633468815...

A269793 G.f.: Product_{n>=1} 1/(1 - x^n/n^5) = Sum_{n>=0} a(n)*x^n/n!^5.

Original entry on oeis.org

1, 1, 33, 8051, 8259776, 25822962624, 200839327164224, 3375758721819353792, 110621043661751405543424, 6532189550762931700406452224, 653226327065916563182761815212032, 105203470361723800472334968046839365632, 26178104032796403698593899646317901702496256
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^5 * SeriesCoefficient[Product[1/(1-x^k/k^5), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
  • PARI
    {a(n)=n!^5*polcoeff(prod(k=1, n, 1/(1-x^k/k^5 +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * n!^5, where c = Product_{k>=2} 1/(1-1/k^5) = abs(Gamma((9+sqrt(5) + i*sqrt(10-2*sqrt(5)))/4) * Gamma((9-sqrt(5) + i*sqrt(10+2*sqrt(5)))/4))^2 = 1.03814501733099931382497266723652151296563..., where Gamma is the Gamma function and i is the imaginary unit. - Vaclav Kotesovec, Mar 05 2016

A269794 G.f.: Product_{n>=1} 1/(1 - x^n/n^6) = Sum_{n>=0} a(n)*x^n/n!^6.

Original entry on oeis.org

1, 1, 65, 47449, 194444416, 3038449102976, 141766192358448256, 16678817447073033946240, 4372271021740050216976646144, 2323608852183697867526563204694016, 2323611343146528421975097303187359268864, 4116421685969107286571222251382158945547976704
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^6 * SeriesCoefficient[Product[1/(1-x^k/k^6), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
  • PARI
    {a(n)=n!^6*polcoeff(prod(k=1, n, 1/(1-x^k/k^6 +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * n!^6, where c = Product_{k>=2} 1/(1-1/k^6) = 6*Pi^2 / cosh(sqrt(3)*Pi/2)^2 = 1.0176208398261870492814795459985... . - Vaclav Kotesovec, Mar 05 2016

A326864 G.f.: Product_{k>=1} (1 + x^k/k^2) = Sum_{n>=0} a(n)*x^n/n!^2.

Original entry on oeis.org

1, 1, 1, 13, 100, 1876, 57636, 2051316, 104640768, 6819033600, 576652089600, 57187381536000, 7057192160793600, 1014733052692300800, 172646881540527744000, 33848454886497227289600, 7637231669166956976537600, 1948418678155880277481881600
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 27 2019

Keywords

Examples

			a(n) ~ c * (n-1)!^2, where c = A156648 = Product_{k>=1} (1 + 1/k^2) = sinh(Pi)/Pi = 3.67607791037497772...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 27 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1+x^k/k^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!^2

A249590 E.g.f.: BesselI(0,2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).

Original entry on oeis.org

1, 1, 6, 63, 1162, 31263, 1207344, 61719326, 4103067834, 341454828363, 34946904263560, 4304483416099530, 629558493157805370, 107728435291299602135, 21346960361800584031800, 4847223770735591212039818, 1250978551922243595690043914, 364052135715732457875255719691
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2014

Keywords

Comments

Here BesselI(0,2) = Sum_{n>=0} 1/n!^2 = 2.2795853023360672... (A070910).

Examples

			E.g.f.: 1 + x + 6*x^2/2!^2 + 63*x^3/3!^2 + 1162*x^4/4!^2 + 31263*x^5/5!^2 +...
such that A(x) = BesselI(0,2)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(4-x^2)) + 1/((1-x)*(4-x^2)*(9-x^3)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)*(25-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients q(n) in Q(x) = Sum_{n>=0} q(n)*x^n/n!^2 begin:
q(0) = 1.279585302336067267437204440811533...
q(1) = 1.279585302336067267437204440811533...
q(2) = 5.397926511680336337186022204057666...
q(3) = 48.69967981446729610442301759976513...
q(4) = 789.3250187996735809262470013346725...
q(5) = 19745.00072507184117617488656759887...
q(6) = 713288.6822890207712374724807435860...
q(7) = 34956701.28771539805703277298850790...
q(8) = 2239176303.370447012433955813571405...
q(9) = 181385849371.3820539848573249577420...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A249078 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = BesselI(0,2)*1 - q(0) = 1;
a(1) = BesselI(0,2)*1 - q(1) = 1;
a(2) = BesselI(0,2)*5 - q(2) = 6;
a(3) = BesselI(0,2)*49 - q(3) = 63;
a(4) = BesselI(0,2)*856 - q(4) = 1162;
a(5) = BesselI(0,2)*22376 - q(5) = 31263;
a(6) = BesselI(0,2)*842536 - q(6) = 1207344;
a(7) = BesselI(0,2)*42409480 - q(7) = 61719326;
a(8) = BesselI(0,2)*2782192064 - q(8) = 4103067834; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
    {Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k^2-x^k +O(x^31))))))); }
    for(n=0, 30, print1(round(besseli(0,2)*P[n+1]-Q[n+1]), ", "))

A249592 E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k/k).

Original entry on oeis.org

1, 1, 6, 64, 1192, 32360, 1257880, 64644520, 4315649600, 360332919360, 36979925855040, 4564758983929920, 668857835862650880, 114624254940995404800, 22742780483191398589440, 5169745984444274224143360, 1335478685859609449305006080, 388956774210908224056394014720
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2014

Keywords

Examples

			E.g.f.: 1 + x + 6*x^2/2!^2 + 64*x^3/3!^2 + 1192*x^4/4!^2 + 32360*x^5/5!^2 +...
such that A(x) = exp(1)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k/k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(2-x^2/2)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)*(4-x^4/4)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)*(4-x^4/4)*(5-x^5/5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 1.718281828459045235360287471352662...
q(1) = 1.718281828459045235360287471352662...
q(2) = 7.591409142295226176801437356763312...
q(3) = 69.19580959449321653265408609628046...
q(4) = 1134.849245160942721468406075477879...
q(5) = 28464.27419359959618642179245898717...
q(6) = 1032370.298622570136419515164963586...
q(7) = 50636398.83839730972810740431058131...
q(8) = 3247132530.854165002836403983556004...
q(9) = 263126229989.7260044371780752021631...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A007841 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = exp(1)*1 - q(0) = 1;
a(1) = exp(1)*1 - q(1) = 1;
a(2) = exp(1)*5 - q(2) = 6;
a(3) = exp(1)*49 - q(3) = 64;
a(4) = exp(1)*856 - q(4) = 1192;
a(5) = exp(1)*22376 - q(5) = 32360;
a(6) = exp(1)*842536 - q(6) = 1257880;
a(7) = exp(1)*42409480 - q(7) = 64644520;
a(8) = exp(1)*2782192064 - q(8) = 4315649600; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
    {Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k-x^k/k +O(x^31))))))); }
    for(n=0, 30, print1(round(exp(1)*P[n+1]-Q[n+1]), ", "))

A249607 E.g.f.: BesselJ(0,2)*P(x) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} -(-1)^n/Product_{k=1..n} (k^2 - x^k).

Original entry on oeis.org

1, 1, 4, 37, 600, 15229, 554868, 27444786, 1770376080, 144306428161, 14507072762052, 1762845211827574, 254794661274061848, 43191427238728121445, 8488249087135630544628, 1914196040519793284483542, 491024013925643339847990144, 142153433027873627036756565313
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2014

Keywords

Comments

Here BesselJ(0,2) = Sum_{n>=0} (-1)^n/n!^2 = 0.223890779141235668... (A091681).

Examples

			E.g.f.: 1 + x + 4*x^2/2!^2 + 37*x^3/3!^2 + 600*x^4/4!^2 + 15229*x^5/5!^2 +...
such that A(x) = BesselJ(0,2)*P(x) + Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} -(-1)^n/Product_{k=1..n} (k^2 - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) - 1/((1-x)*(4-x^2)) + 1/((1-x)*(4-x^2)*(9-x^3)) - 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)*(25-x^5)) -+...
We can illustrate the initial terms a(n) in the following manner.
The coefficients q(n) in Q(x) = Sum_{n>=0} q(n)*x^n/n!^2 begin:
q(0) = 0.776109220858764331948172545350051...
q(1) = 0.776109220858764331948172545350051...
q(2) = 2.880546104293821659740862726750256...
q(3) = 26.02935182207945226546045472215251...
q(4) = 408.3494930551022681476356988196439...
q(5) = 10219.21992593571069167230887475274...
q(6) = 366231.9585054598651822855036690508...
q(7) = 17949694.47982534876046938459857209...
q(8) = 1147468931.070477389192467314975593...
q(9) = 92955330843.11376518199210023477232...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A249588 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = BesselJ(0,2)*1 + q(0) = 1;
a(1) = BesselJ(0,2)*1 + q(1) = 1;
a(2) = BesselJ(0,2)*5 + q(2) = 4;
a(3) = BesselJ(0,2)*49 + q(3) = 37;
a(4) = BesselJ(0,2)*856 + q(4) = 600;
a(5) = BesselJ(0,2)*22376 + q(5) = 15229;
a(6) = BesselJ(0,2)*842536 + q(6) = 554868;
a(7) = BesselJ(0,2)*42409480 + q(7) = 27444786;
a(8) = BesselJ(0,2)*2782192064 + q(8) = 1770376080; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
    {Q=Vec(serlaplace(serlaplace(sum(n=1, 201, -(-1)^n*prod(k=1, n, 1./(k^2-x^k +O(x^31))))))); }
    for(n=0, 30, print1(round(besselj(0,2)*P[n+1]+Q[n+1]), ", "))

A336295 a(n) = (n!)^n * [x^n] Product_{k>=1} 1/(1 - x^k/k^n).

Original entry on oeis.org

1, 1, 5, 251, 359200, 25822962624, 141766192358448256, 83301485967496541735457536, 7013555995366382867427754604471779328, 109330254486209621988088555707809713786027354619904, 396335044092985772297627538614627390881554195217999599121962369024
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 16 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k)+b(n-i, min(n-i, i), k)*((i-1)!*binomial(n, i))^k))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 27 2023
  • Mathematica
    Table[(n!)^n SeriesCoefficient[Product[1/(1 - x^k/k^n), {k, 1, n}], {x, 0, n}], {n, 0, 10}]
Showing 1-10 of 12 results. Next