cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007841 Number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Original entry on oeis.org

1, 1, 3, 11, 56, 324, 2324, 18332, 167544, 1674264, 18615432, 223686792, 2937715296, 41233157952, 623159583552, 10008728738304, 171213653641344, 3092653420877952, 59086024678203264, 1185657912197967744, 25015435198774723584, 552130504313534175744
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    p := product(1/(1-x^m/m), m=1..100):
    s := series(p,x,100):
    for i from 0 to 100 do printf(`%.0f,`,i!*coeff(s,x,i)) od:
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (i-1)!^j*b(n-i*j, i-1)*multinomial(n, n-i*j, i$j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 21 2014
  • Mathematica
    nmax = 25; CoefficientList[Series[1/Product[(1 - x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
    nmax = 25; CoefficientList[Series[Exp[Sum[PolyLog[j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 24 2019 *)
  • Maxima
    R(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 09 2014 */
  • PARI
    N=66; q='q+O('q^N);
    f=1/prod(n=1,N, 1-1/n*q^n );
    egf=serlaplace(f);
    Vec(egf)
    /* Joerg Arndt, Oct 06 2012 */
    

Formula

E.g.f.: prod{m >= 1} 1/(1-x^m/m).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} d^(1-k/d) and a(0) = 1. - Vladeta Jovovic, Oct 14 2002
a(n) = R(n,1), R(n,m) = R(n,m+1)+binomial(n,m)*(m-1)!*R(n-m,m), R(n,n)=(n-1)!, R(n,m)=0 for nVladimir Kruchinin, Sep 09 2014
a(n) ~ c * n! * n, where c = exp(-gamma) = 0.56145948..., where gamma is the Euler-Mascheroni constant A001620 [Lehmer, 1972]. - Vaclav Kotesovec, Mar 05 2016
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*j^k)). - Ilya Gutkovskiy, May 27 2018

Extensions

More terms from James Sellers, Jan 09 2001
Prepended a(0) = 1, Joerg Arndt, Oct 06 2012

A249474 E.g.f.: P(x)/exp(1) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k).

Original entry on oeis.org

1, 1, 2, 7, 30, 169, 1128, 8700, 76494, 753139, 8182188, 97131376, 1256860330, 17470791933, 261284377168, 4164406202270, 70677340199670, 1268718107324255, 24091289738163140, 480954355282406340, 10097484764045220626, 221918808641500960217, 5103937368681669463800
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2014

Keywords

Comments

The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 30*x^4/4! + 169*x^5/5! +...
such that A(x) = exp(-1)*P(x) + Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} -(-1)^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 1/(1-x) - 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) - 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +-...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 0.632120558828557678...
q(1) = 0.632120558828557678...
q(2) = 0.896361676485673035...
q(3) = 2.953326147114134462...
q(4) = 9.398751294399229990...
q(5) = 49.80706106045268780...
q(6) = 273.0481787175680446...
q(7) = 1956.034084445119360...
q(8) = 14858.00690837186767...
q(9) = 137211.6953065362928...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(-1)*1 + q(0) = 1;
a(1) = exp(-1)*1 + q(1) = 1;
a(2) = exp(-1)*3 + q(2) = 2;
a(3) = exp(-1)*11 + q(3) = 7;
a(4) = exp(-1)*56 + q(4) = 30;
a(5) = exp(-1)*324 + q(5) = 169;
a(6) = exp(-1)*2324 + q(6) = 1128;
a(7) = exp(-1)*18332 + q(7) = 8700;
a(8) = exp(-1)*167544 + q(8) = 76494; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
    {Q=Vec(serlaplace(sum(n=1, 201, -(-1)^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
    for(n=0, 30, print1(round(exp(-1)*P[n+1]+Q[n+1]), ", "))

A249475 E.g.f.: exp(2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 2^n/Product_{k=1..n} (k - x^k).

Original entry on oeis.org

1, 1, 5, 25, 156, 1048, 8400, 72384, 710184, 7519240, 87797880, 1098513880, 14945280640, 216079283040, 3352657547680, 55071779464352, 961293645943680, 17669716422651776, 342988501737128576, 6978772157389361280, 149123855108936024576, 3328674238745847019520
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2014

Keywords

Comments

The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 25*x^3/3! + 156*x^4/4! + 1048*x^5/5! +...
such that A(x) = exp(2)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} 2^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 2/(1-x) + 2^2/((1-x)*(2-x^2)) + 2^3/((1-x)*(2-x^2)*(3-x^3)) + 2^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 2^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 6.3890560989306502272...
q(1) = 6.3890560989306502272...
q(2) = 17.167168296791950681...
q(3) = 56.279617088237152499...
q(4) = 257.78714154011641272...
q(5) = 1346.0541760535306736...
q(6) = 8772.1663739148311280...
q(7) = 63072.176405596679965...
q(8) = 527808.01503923686167...
q(9) = 4851990.6204200261720...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(2)*1 - q(0) = 1;
a(1) = exp(2)*1 - q(1) = 1;
a(2) = exp(2)*3 - q(2) = 5;
a(3) = exp(2)*11 - q(3) = 25;
a(4) = exp(2)*56 - q(4) = 156;
a(5) = exp(2)*324 - q(5) = 1048;
a(6) = exp(2)*2324 - q(6) = 8400;
a(7) = exp(2)*18332 - q(7) = 72384;
a(8) = exp(2)*167544 - q(8) = 710184; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
    {Q=Vec(serlaplace(sum(n=1, 201, 2^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
    for(n=0, 30, print1(round(exp(2)*P[n+1]-Q[n+1]), ", "))

A249480 E.g.f.: A(x,y) = exp(y)*P(x) - Q(x,y), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x,y) = Sum_{n>=1} y^n / Product_{k=1..n} (k - x^k).

Original entry on oeis.org

1, 1, 0, 3, 1, 0, 11, 5, 1, 0, 56, 32, 7, 1, 0, 324, 204, 57, 9, 1, 0, 2324, 1604, 487, 89, 11, 1, 0, 18332, 13292, 4441, 897, 128, 13, 1, 0, 167544, 127224, 44712, 9864, 1486, 174, 15, 1, 0, 1674264, 1311384, 485592, 111744, 18486, 2286, 227, 17, 1, 0, 18615432, 14986632, 5735616, 1393872, 240318, 31734, 3329, 287, 19, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2014

Keywords

Comments

The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Examples

			 Triangle begins:
1;
1, 0;
3, 1, 0;
11, 5, 1, 0;
56, 32, 7, 1, 0;
324, 204, 57, 9, 1, 0;
2324, 1604, 487, 89, 11, 1, 0;
18332, 13292, 4441, 897, 128, 13, 1, 0;
167544, 127224, 44712, 9864, 1486, 174, 15, 1, 0;
1674264, 1311384, 485592, 111744, 18486, 2286, 227, 17, 1, 0;
18615432, 14986632, 5735616, 1393872, 240318, 31734, 3329, 287, 19, 1, 0;
223686792, 183769992, 72550296, 18223632, 3296958, 455742, 51009, 4647, 354, 21, 1, 0;
2937715296, 2458713696, 993598248, 257587416, 48076704, 6958656, 801880, 77896, 6272, 428, 23, 1, 0;
41233157952, 35006137152, 14438206776, 3835359192, 738870048, 110022696, 13300084, 1330300, 114164, 8236, 509, 25, 1, 0; ...
GENERATING FUNCTION.
G.f.: A(x,y) = 1 + (1)*x + (3 + y)*x^2/2! + (11 + 5*y + y^2)*x^3/3! +
(56 + 32*y + 7*y^2 + y^3)*x^4/4! +
(324 + 204*y + 57*y^2 + 9*y^3 + y^4)*x^5/5! +
(2324 + 1604*y + 487*y^2 + 89*y^3 + 11*y^4 + y^5)*x^6/6! +...
such that
A(x,y) = exp(y)*P(x) - Q(x,y)
where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x,y) = Sum_{n>=1} y^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...)
Q(x,y) = y/(1-x) + y^2/((1-x)*(2-x^2)) + y^3/((1-x)*(2-x^2)*(3-x^3)) + y^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + y^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
Column zero of this triangle forms the e.g.f. of A007841:
P(x) = 1 + x + 3*x^2/2! + 11*x^3/3! + 56*x^4/4! + 324*x^5/5! + 2324*x^6/6! + 18332*x^7/7! + 167544*x^8/8! +...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(A=1, P=((prod(j=1, n+1, 1/(1 - x^j/j +x^2*O(x^n))))),
    Q=((sum(m=1, n+1, y^m * prod(j=1, m, 1/(j - x^j +x^2*O(x^n)))))) );
    A=exp(y)*P - Q; n!*polcoeff(polcoeff(A,n,x),k,y)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

A249476 E.g.f.: exp(3)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 3^n/Product_{k=1..n} (k - x^k).

Original entry on oeis.org

1, 1, 6, 35, 242, 1773, 15056, 136652, 1393722, 15257919, 183206388, 2347929936, 32602306542, 479885400177, 7563888117504, 125952344438838, 2225653414414386, 41351620513521627, 810520833521436732, 16633643598838880244, 358221783030360367014, 8051927483267030640573
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2014

Keywords

Comments

The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 35*x^3/3! + 242*x^4/4! + 1773*x^5/5! +...
such that A(x) = exp(3)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} 3^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 3/(1-x) + 3^2/((1-x)*(2-x^2)) + 3^3/((1-x)*(2-x^2)*(3-x^3)) + 3^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 3^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 19.085536923187667740...
q(1) = 19.085536923187667740...
q(2) = 54.256610769563003222...
q(3) = 185.94090615506434515...
q(4) = 882.79006769850939349...
q(5) = 4734.7139631128043480...
q(6) = 31622.787809488139829...
q(7) = 231556.06287587632502...
q(8) = 1971489.1982585546039...
q(9) = 18370572.391163877342...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(3)*1 - q(0) = 1;
a(1) = exp(3)*1 - q(1) = 1;
a(2) = exp(3)*3 - q(2) = 6;
a(3) = exp(3)*11 - q(3) = 35;
a(4) = exp(3)*56 - q(4) = 242;
a(5) = exp(3)*324 - q(5) = 1773;
a(6) = exp(3)*2324 - q(6) = 15056;
a(7) = exp(3)*18332 - q(7) = 136652;
a(8) = exp(3)*167544 - q(8) = 1393722; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
    {Q=Vec(serlaplace(sum(n=1, 201, 3^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
    for(n=0, 30, print1(round(exp(3)*P[n+1]-Q[n+1]), ", "))

A249477 E.g.f.: exp(4)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 4^n/Product_{k=1..n} (k - x^k).

Original entry on oeis.org

1, 1, 7, 47, 360, 2884, 26068, 250140, 2659544, 30188024, 373401768, 4911407656, 69701336160, 1046114985408, 16770977757888, 283455401409920, 5076208319560320, 95434083840830080, 1890657361059194240, 39170792604756397440, 850920224456551054336, 19275340855527901297152
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2014

Keywords

Comments

The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 47*x^3/3! + 360*x^4/4! + 2884*x^5/5! +...
such that A(x) = exp(4)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} 4^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 4/(1-x) + 4^2/((1-x)*(2-x^2)) + 4^3/((1-x)*(2-x^2)*(3-x^3)) + 4^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 4^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 53.59815003314423907811...
q(1) = 53.59815003314423907811...
q(2) = 156.7944500994327172343...
q(3) = 553.5796503645866298592...
q(4) = 2697.496401856077388374...
q(5) = 14805.80061073873346130...
q(6) = 100818.1006770272116175...
q(7) = 750753.2864076001907799...
q(8) = 6488048.449153118392102...
q(9) = 61223693.06709220629587...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(4)*1 - q(0) = 1;
a(1) = exp(4)*1 - q(1) = 1;
a(2) = exp(4)*3 - q(2) = 7;
a(3) = exp(4)*11 - q(3) = 47;
a(4) = exp(4)*56 - q(4) = 360;
a(5) = exp(4)*324 - q(5) = 2884;
a(6) = exp(4)*2324 - q(6) = 26068;
a(7) = exp(4)*18332 - q(7) = 250140;
a(8) = exp(4)*167544 - q(8) = 2659544; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
    {Q=Vec(serlaplace(sum(n=1, 201, 4^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
    for(n=0, 30, print1(round(exp(4)*P[n+1]-Q[n+1]), ", "))

A249478 E.g.f.: P(x)/exp(2) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} -(-2)^n/Product_{k=1..n} (k - x^k).

Original entry on oeis.org

1, 1, 1, 5, 12, 88, 496, 4032, 32072, 335144, 3443928, 41477176, 523289472, 7298441952, 107525078304, 1714360202528, 28771306555776, 515446334184832, 9722819034952832, 193501572577378944, 4042243606465206784, 88584621284011603968, 2029364250844776170496, 48539531534286294782976
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2014

Keywords

Comments

The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 5*x^3/3! + 12*x^4/4! + 88*x^5/5! +...
such that A(x) = exp(-2)*P(x) + Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} -(-2)^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 2/(1-x) - 2^2/((1-x)*(2-x^2)) + 2^3/((1-x)*(2-x^2)*(3-x^3)) - 2^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 2^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 0.864664716763387308106000...
q(1) = 0.864664716763387308106000...
q(2) = 0.593994150290161924318001...
q(3) = 3.511311884397260389166005...
q(4) = 4.421224138749689253936028...
q(5) = 44.15136823133748782634416...
q(6) = 181.4808017581121040383451...
q(7) = 1551.033587706416132199201...
q(8) = 9397.385305404963149311748...
q(9) = 108557.0073471358880187848...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(-2)*1 + q(0) = 1;
a(1) = exp(-2)*1 + q(1) = 1;
a(2) = exp(-2)*3 + q(2) = 1;
a(3) = exp(-2)*11 + q(3) = 5;
a(4) = exp(-2)*56 + q(4) = 12;
a(5) = exp(-2)*324 + q(5) = 88;
a(6) = exp(-2)*2324 + q(6) = 496;
a(7) = exp(-2)*18332 + q(7) = 4032;
a(8) = exp(-2)*167544 + q(8) = 32072; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
    {Q=Vec(serlaplace(sum(n=1, 201, -(-2)^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
    for(n=0, 30, print1(round(exp(-2)*P[n+1]+Q[n+1]), ", "))

A249590 E.g.f.: BesselI(0,2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).

Original entry on oeis.org

1, 1, 6, 63, 1162, 31263, 1207344, 61719326, 4103067834, 341454828363, 34946904263560, 4304483416099530, 629558493157805370, 107728435291299602135, 21346960361800584031800, 4847223770735591212039818, 1250978551922243595690043914, 364052135715732457875255719691
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2014

Keywords

Comments

Here BesselI(0,2) = Sum_{n>=0} 1/n!^2 = 2.2795853023360672... (A070910).

Examples

			E.g.f.: 1 + x + 6*x^2/2!^2 + 63*x^3/3!^2 + 1162*x^4/4!^2 + 31263*x^5/5!^2 +...
such that A(x) = BesselI(0,2)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k^2 - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(4-x^2)) + 1/((1-x)*(4-x^2)*(9-x^3)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)) + 1/((1-x)*(4-x^2)*(9-x^3)*(16-x^4)*(25-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients q(n) in Q(x) = Sum_{n>=0} q(n)*x^n/n!^2 begin:
q(0) = 1.279585302336067267437204440811533...
q(1) = 1.279585302336067267437204440811533...
q(2) = 5.397926511680336337186022204057666...
q(3) = 48.69967981446729610442301759976513...
q(4) = 789.3250187996735809262470013346725...
q(5) = 19745.00072507184117617488656759887...
q(6) = 713288.6822890207712374724807435860...
q(7) = 34956701.28771539805703277298850790...
q(8) = 2239176303.370447012433955813571405...
q(9) = 181385849371.3820539848573249577420...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A249078 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = BesselI(0,2)*1 - q(0) = 1;
a(1) = BesselI(0,2)*1 - q(1) = 1;
a(2) = BesselI(0,2)*5 - q(2) = 6;
a(3) = BesselI(0,2)*49 - q(3) = 63;
a(4) = BesselI(0,2)*856 - q(4) = 1162;
a(5) = BesselI(0,2)*22376 - q(5) = 31263;
a(6) = BesselI(0,2)*842536 - q(6) = 1207344;
a(7) = BesselI(0,2)*42409480 - q(7) = 61719326;
a(8) = BesselI(0,2)*2782192064 - q(8) = 4103067834; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
    {Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k^2-x^k +O(x^31))))))); }
    for(n=0, 30, print1(round(besseli(0,2)*P[n+1]-Q[n+1]), ", "))

A249592 E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n^2) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k/k).

Original entry on oeis.org

1, 1, 6, 64, 1192, 32360, 1257880, 64644520, 4315649600, 360332919360, 36979925855040, 4564758983929920, 668857835862650880, 114624254940995404800, 22742780483191398589440, 5169745984444274224143360, 1335478685859609449305006080, 388956774210908224056394014720
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2014

Keywords

Examples

			E.g.f.: 1 + x + 6*x^2/2!^2 + 64*x^3/3!^2 + 1192*x^4/4!^2 + 32360*x^5/5!^2 +...
such that A(x) = exp(1)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n^2) = Sum_{n>=0} A249588(n)*x^n/n!^2, and
Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k/k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...);
Q(x) = 1/(1-x) + 1/((1-x)*(2-x^2/2)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)*(4-x^4/4)) + 1/((1-x)*(2-x^2/2)*(3-x^3/3)*(4-x^4/4)*(5-x^5/5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 1.718281828459045235360287471352662...
q(1) = 1.718281828459045235360287471352662...
q(2) = 7.591409142295226176801437356763312...
q(3) = 69.19580959449321653265408609628046...
q(4) = 1134.849245160942721468406075477879...
q(5) = 28464.27419359959618642179245898717...
q(6) = 1032370.298622570136419515164963586...
q(7) = 50636398.83839730972810740431058131...
q(8) = 3247132530.854165002836403983556004...
q(9) = 263126229989.7260044371780752021631...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n^2) begin:
A007841 = [1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, ...];
from which we can generate this sequence like so:
a(0) = exp(1)*1 - q(0) = 1;
a(1) = exp(1)*1 - q(1) = 1;
a(2) = exp(1)*5 - q(2) = 6;
a(3) = exp(1)*49 - q(3) = 64;
a(4) = exp(1)*856 - q(4) = 1192;
a(5) = exp(1)*22376 - q(5) = 32360;
a(6) = exp(1)*842536 - q(6) = 1257880;
a(7) = exp(1)*42409480 - q(7) = 64644520;
a(8) = exp(1)*2782192064 - q(8) = 4315649600; ...
		

Crossrefs

Programs

  • PARI
    \p100 \\ set precision
    {P=Vec(serlaplace(serlaplace(prod(k=1, 31, 1/(1-x^k/k^2 +O(x^31)))))); } \\ A249588
    {Q=Vec(serlaplace(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k-x^k/k +O(x^31))))))); }
    for(n=0, 30, print1(round(exp(1)*P[n+1]-Q[n+1]), ", "))
Showing 1-9 of 9 results.