cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292627 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(0,2*x).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 2, 3, 0, 1, 3, 6, 7, 6, 1, 4, 11, 20, 19, 0, 1, 5, 18, 45, 70, 51, 20, 1, 6, 27, 88, 195, 252, 141, 0, 1, 7, 38, 155, 454, 873, 924, 393, 70, 1, 8, 51, 252, 931, 2424, 3989, 3432, 1107, 0, 1, 9, 66, 385, 1734, 5775, 13236, 18483, 12870, 3139, 252, 1, 10, 83, 560, 2995, 12276, 36645, 73392, 86515, 48620, 8953, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A126869 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) =  1 + k*x/1! + (k^2 + 2)*x^2/2! + (k^3 + 6*k)*x^3/3! + (k^4 + 12*k^2 + 6)*x^4/4! + (k^5 + 20*k^3 + 30*k)*x^5/5! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  0,   1,    2,    3,     4,     5,  ...
  2,   3,    6,   11,    18,    27,  ...
  0,   7,   20,   45,    88,   155,  ...
  6,  19,   70,  195,   454,   931,  ...
  0,  51,  252,  873,  2424,  5775,  ...
		

Crossrefs

Rows n=0..2 give A000012, A001477, A059100.
Main diagonal gives A186925.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[0, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/Sqrt[(1 + 2 x - k x) (1 - 2 x - k x)], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

O.g.f. of column k: 1/sqrt( (1 - (k-2)*x)*(1 - (k+2)*x) ).
E.g.f. of column k: exp(k*x)*BesselI(0,2*x).
From Seiichi Manyama, May 01 2019: (Start)
A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + x^2)^n.
A(n,k) = Sum_{j=0..n} (k-2)^(n-j) * binomial(n,j) * binomial(2*j,j).
A(n,k) = Sum_{j=0..n} (k+2)^(n-j) * (-1)^j * binomial(n,j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - (k^2-4) * (n-1) * A(n-2,k). (End)
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(n,2*j) * binomial(2*j,j). - Seiichi Manyama, May 04 2019
T(n,k) = (1/Pi) * Integral_{x = -1..1} (k - 2 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (k + 2 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
A(n,k) = (1/4)^n * Sum_{j=0..n} (k-2)^j * (k+2)^(n-j) * binomial(2*j,j) * binomial(2*(n-j),n-j). - Seiichi Manyama, Aug 18 2025