cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A292730 Numbers in which 0 outnumbers all other digits together.

Original entry on oeis.org

0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 10001, 10002, 10003, 10004, 10005, 10006, 10007, 10008, 10009, 10010, 10020, 10030, 10040, 10050, 10060, 10070, 10080, 10090, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292450.
Numbers n such that A055641(n) > (A055642(n)/2). - Felix Fröhlich, Sep 22 2017
Also numbers whose median of the digits is equal to 0. - Stefano Spezia, Oct 04 2023

Examples

			100 has more 0's than any other digit, whereas both 1001 and 1002 have as many other digits as 0's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 11000], Total@ #1 < First@ #2 & @@ TakeDrop[DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
  • PARI
    a055641(n)=if(n, n=digits(n); sum(i=2, #n, n[i]==0), 1) \\ after Charles R Greathouse IV
    is(n) = a055641(n) > (#Str(n)/2) \\ Felix Fröhlich, Sep 22 2017

A292739 Numbers in which 9 outnumbers all other digits together.

Original entry on oeis.org

9, 99, 199, 299, 399, 499, 599, 699, 799, 899, 909, 919, 929, 939, 949, 959, 969, 979, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9099, 9199, 9299, 9399, 9499, 9599, 9699, 9799, 9899, 9909, 9919, 9929, 9939, 9949, 9959, 9969, 9979, 9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999
Offset: 1

Views

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Comments

Also numbers whose median of the digits is equal to 9. - Stefano Spezia, Oct 04 2023

Examples

			909 has more 9's than any other digit, whereas both 9009 and 9019 have as many other digits as 9's.
		

Crossrefs

Subset of A292449.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292738.

Programs

  • Mathematica
    Select[Range[0, 10^4], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 9] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)
    Select[Range[10000],2*DigitCount[#,10, 9]>IntegerLength[#]&] (* Harvey P. Dale, Aug 04 2019 *)

A293869 Square array whose n-th row lists all numbers having n as a substring, n >= 1; read by falling antidiagonals.

Original entry on oeis.org

1, 10, 2, 11, 12, 3, 12, 20, 13, 4, 13, 21, 23, 14, 5, 14, 22, 30, 24, 15, 6, 15, 23, 31, 34, 25, 16, 7, 16, 24, 32, 40, 35, 26, 17, 8, 17, 25, 33, 41, 45, 36, 27, 18, 9, 18, 26, 34, 42, 50, 46, 37, 28, 19, 10, 19, 27, 35, 43, 51, 56, 47, 38, 29, 100, 11
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Examples

			The array starts:
   [ 1  10  11  12  13  14  15  16  17  18  19  21  31 ...] = A011531
   [ 2  12  20  21  22  23  24  25  26  27  28  29  32 ...] = A011532
   [ 3  13  23  30  31  32  33  34  35  36  37  38  39 ...] = A011533
   [ 4  14  24  34  40  41  42  43  44  45  46  47  48 ...] = A011534
   [ 5  15  25  35  45  50  51  52  53  54  55  56  57 ...] = A011535
   [ 6  16  26  36  46  56  60  61  62  63  64  65  66 ...] = A011536
   [ 7  17  27  37  47  57  67  70  71  72  73  74  75 ...] = A011537
   [ 8  18  28  38  48  58  68  78  80  81  82  83  84 ...] = A011538
   [ 9  19  29  39  49  59  69  79  89  90  91  92  93 ...] = A011539
   [10 100 101 102 103 104 105 106 107 108 109 110 210 ...] = A293870
   [11 110 111 112 113 114 115 116 117 118 119 211 311 ...] = A293871
   [12 112 120 121 122 123 124 125 126 127 128 129 212 ...] = A293872
   [   ...             ...             ...             ...]
		

Crossrefs

Cf. A072484, A292690 (variant starting with row 0).
Cf. A292451, A292731 (both partially coincide with row 11, but no inclusion relation holds).

Programs

  • Mathematica
    Block[{d = 15, q, a, s}, a = Table[q = n-1; s = IntegerString[n]; Table[While[StringFreeQ[IntegerString[++q], s]]; q, d-n+1], {n, d}]; Table[a[[n, k-n+1]], {k, d}, {n, k}]] (* Paolo Xausa, Mar 01 2024 *)
  • PARI
    has=(n,p,m=10^#Str(p))->until(p>n\=10,n%m==p&&return(1))
    Mat(vectorv(12,n,a=[];for(k=n,oo,has(k,n)||next;a=concat(a,k);#a>12&&break);a))
    
  • Perl
    See Links section.

Formula

T(n, k) = A072484(n, k) for any n > 0 and k = 1..n. - Rémy Sigrist, Jan 29 2021

A293871 Numbers having 11 as substring of their digits.

Original entry on oeis.org

11, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 211, 311, 411, 511, 611, 711, 811, 911, 1011, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Crossrefs

Row 11 of A292690 and A293869.
Cf. A292451, A292731 (both partially coincide with this sequence, but no inclusion relation holds).
Cf. A011540, A011531, A011532, A011533, A011534, A011535, A011536, A011537, A011538, A011539: analog for substrings '0' through '9'.
Cf. A293870, A293872, A293873, A293874, A293875, A293876, A293877, A293878, A293879, A293880: same for substrings '10' - '20'.
Cf. A121031: subsequence of terms divisible by 11.
Numbers divisible by k and having k as a substring: A121022 (2), A121023 (3), A121024 (4), A121025 (5), A121026 (6), A121027 (7), A121028 (8), A121029 (9), A121030 (10), A121031 (11), A121032 (12), A121033 (13), A121034 (14), A121035 (15), A121036 (16), A121037 (17), A121038 (18), A121039 (19), A121040 (20).
Cf. A121041.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "11"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293871 = has(n,p=11,m=10^#Str(p))=until(p>n\=10,n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A292733 Numbers in which 3 outnumbers all other digits together.

Original entry on oeis.org

3, 33, 133, 233, 303, 313, 323, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 343, 353, 363, 373, 383, 393, 433, 533, 633, 733, 833, 933, 1333, 2333, 3033, 3133, 3233, 3303, 3313, 3323, 3330, 3331, 3332, 3333, 3334, 3335, 3336, 3337, 3338, 3339, 3343, 3353, 3363, 3373, 3383, 3393, 3433, 3533, 3633, 3733, 3833, 3933, 4333, 5333, 6333, 7333, 8333
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292453.

Examples

			303 has more 3's than any other digit, whereas both 3003 and 3013 have as many other digits as 3's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 9000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 3] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
    Select[Range[9000],DigitCount[#,10,3]>IntegerLength[#]/2&] (* Harvey P. Dale, Jun 17 2025 *)

Extensions

a(48) and following corrected by Georg Fischer, Dec 22 2022

A292736 Numbers in which 6 outnumbers all other digits together.

Original entry on oeis.org

6, 66, 166, 266, 366, 466, 566, 606, 616, 626, 636, 646, 656, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 676, 686, 696, 766, 866, 966, 1666, 2666, 3666, 4666, 5666, 6066, 6166, 6266, 6366, 6466, 6566, 6606, 6616, 6626, 6636, 6646, 6656, 6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669, 6676, 6686
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292456.

Examples

			606 has more 6's than any other digit, whereas both 6006 and 6016 have as many other digits as 6's.
		

Crossrefs

Programs

  • Maple
    F:= proc(d) local s, m, T;
      s:= 6*(10^d-1)/9;
      T:= select(`>=`,{seq(seq(seq(s+G(c,k), k = 0 .. 10^m-1),c = combinat:-choose([$0..d-1],m)),m=0 .. floor((d-1)/2))},10^(d-1));
      op(sort(convert(T,list)))
    end proc:
    G:= proc(c,k) local L,m,j;
          m:= nops(c);
          L:= convert(10^m+k,base,10);
          add((L[j]-6)*10^c[j], j=1..m)
    end proc:
    seq(F(d),d=1..4); # Robert Israel, Sep 24 2017
  • Mathematica
    Select[Range[0, 6700], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 6] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)

A292732 Numbers in which 2 outnumbers all other digits together.

Original entry on oeis.org

2, 22, 122, 202, 212, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 232, 242, 252, 262, 272, 282, 292, 322, 422, 522, 622, 722, 822, 922, 1222, 2022, 2122, 2202, 2212, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229, 2232, 2242, 2252, 2262, 2272, 2282, 2292, 2322, 2422, 2522, 2622, 2722, 2822, 2922
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292452.

Examples

			202 has more 2's than any other digit, whereas both 2002 and 2012 have as many other digits as 2's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 3000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 2] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
  • Python
    def ok(n):
      s=str(n); return s.count('2') > sum([0]+[s.count(d) for d in s if d!='2'])
    print([m for m in range(2923) if ok(m)]) # Michael S. Branicky, Feb 22 2021

A292734 Numbers in which 4 outnumbers all other digits together.

Original entry on oeis.org

4, 44, 144, 244, 344, 404, 414, 424, 434, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 454, 464, 474, 484, 494, 544, 644, 744, 844, 944, 1444, 2444, 3444, 4044, 4144, 4244, 4344, 4404, 4414, 4424, 4434, 4440, 4441, 4442, 4443, 4444, 4445, 4446, 4447, 4448, 4449, 4454, 4464, 4474, 4484, 4494, 4544, 4644, 4744
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292454.

Examples

			404 has more 4's than any other digit, whereas both 4004 and 4014 have as many other digits as 4's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 4500], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 4] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
    Select[Range[5000],DigitCount[#,10,4]>IntegerLength[#]/2&] (* Harvey P. Dale, Nov 19 2019 *)

A292735 Numbers in which 5 outnumbers all other digits together.

Original entry on oeis.org

5, 55, 155, 255, 355, 455, 505, 515, 525, 535, 545, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 565, 575, 585, 595, 655, 755, 855, 955, 1555, 2555, 3555, 4555, 5055, 5155, 5255, 5355, 5455, 5505, 5515, 5525, 5535, 5545, 5550, 5551, 5552, 5553, 5554, 5555, 5556, 5557, 5558, 5559, 5565, 5575, 5585, 5595, 5655
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292455.

Examples

			505 has more 5's than any other digit, whereas both 5005 and 5015 have as many other digits as 5's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 6000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 5] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
    Select[Range[6000],DigitCount[#,10,5]>(IntegerLength[#]-DigitCount[#,10,5])&] (* Harvey P. Dale, May 08 2022 *)

A292738 Numbers in which 8 outnumbers all other digits together.

Original entry on oeis.org

8, 88, 188, 288, 388, 488, 588, 688, 788, 808, 818, 828, 838, 848, 858, 868, 878, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 898, 988, 1888, 2888, 3888, 4888, 5888, 6888, 7888, 8088, 8188, 8288, 8388, 8488, 8588, 8688, 8788, 8808, 8818, 8828, 8838, 8848, 8858, 8868, 8878, 8880, 8881, 8882, 8883, 8884, 8885, 8886, 8887, 8888
Offset: 1

Views

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Examples

			808 has more 8's than any other digit, whereas both 8008 and 8018 have as many other digits as 8's.
		

Crossrefs

Subset of A292458.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292737, A292739.

Programs

  • Mathematica
    Select[Range[0, 9000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 8] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)
Showing 1-10 of 11 results. Next