cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A292730 Numbers in which 0 outnumbers all other digits together.

Original entry on oeis.org

0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 10001, 10002, 10003, 10004, 10005, 10006, 10007, 10008, 10009, 10010, 10020, 10030, 10040, 10050, 10060, 10070, 10080, 10090, 10100, 10200, 10300, 10400, 10500, 10600, 10700, 10800, 10900, 11000
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292450.
Numbers n such that A055641(n) > (A055642(n)/2). - Felix Fröhlich, Sep 22 2017
Also numbers whose median of the digits is equal to 0. - Stefano Spezia, Oct 04 2023

Examples

			100 has more 0's than any other digit, whereas both 1001 and 1002 have as many other digits as 0's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 11000], Total@ #1 < First@ #2 & @@ TakeDrop[DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
  • PARI
    a055641(n)=if(n, n=digits(n); sum(i=2, #n, n[i]==0), 1) \\ after Charles R Greathouse IV
    is(n) = a055641(n) > (#Str(n)/2) \\ Felix Fröhlich, Sep 22 2017

A292739 Numbers in which 9 outnumbers all other digits together.

Original entry on oeis.org

9, 99, 199, 299, 399, 499, 599, 699, 799, 899, 909, 919, 929, 939, 949, 959, 969, 979, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9099, 9199, 9299, 9399, 9499, 9599, 9699, 9799, 9899, 9909, 9919, 9929, 9939, 9949, 9959, 9969, 9979, 9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999
Offset: 1

Views

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Comments

Also numbers whose median of the digits is equal to 9. - Stefano Spezia, Oct 04 2023

Examples

			909 has more 9's than any other digit, whereas both 9009 and 9019 have as many other digits as 9's.
		

Crossrefs

Subset of A292449.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292738.

Programs

  • Mathematica
    Select[Range[0, 10^4], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 9] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)
    Select[Range[10000],2*DigitCount[#,10, 9]>IntegerLength[#]&] (* Harvey P. Dale, Aug 04 2019 *)

A292731 Numbers in which 1 outnumbers all other digits together.

Original entry on oeis.org

1, 11, 101, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 131, 141, 151, 161, 171, 181, 191, 211, 311, 411, 511, 611, 711, 811, 911, 1011, 1101, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1121, 1131, 1141, 1151, 1161, 1171, 1181, 1191, 1211, 1311, 1411, 1511, 1611, 1711, 1811, 1911, 2111
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292451.

Examples

			101 has more 1's than any other digit, whereas both 1001 and 1012 have as many other digits as 1's.
		

Crossrefs

Programs

  • Maple
    g:= proc(d,m) option remember;
           local A,B,i;
             if d > m then A:= map(t -> seq(10*t+i,i=[0,$2..9]),procname(d-1,m))
             else A:= []
             fi;
             if m > 0 then B:= map(t -> 10*t+1, procname(d-1,m-1))
             else B:= []
             fi;
             [op(A),op(B)]
    end proc;
    g(1,0):= [$2..9]:
    g(1,1):= [1]:
    f:= proc(d) local m; seq(op(g(d,m)),m=ceil((d+1)/2)..d) end proc:
    sort([seq(f(d),d=1..4)]); # Robert Israel, Jan 10 2019
  • Mathematica
    Select[Range[0, 2200], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)

A292733 Numbers in which 3 outnumbers all other digits together.

Original entry on oeis.org

3, 33, 133, 233, 303, 313, 323, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 343, 353, 363, 373, 383, 393, 433, 533, 633, 733, 833, 933, 1333, 2333, 3033, 3133, 3233, 3303, 3313, 3323, 3330, 3331, 3332, 3333, 3334, 3335, 3336, 3337, 3338, 3339, 3343, 3353, 3363, 3373, 3383, 3393, 3433, 3533, 3633, 3733, 3833, 3933, 4333, 5333, 6333, 7333, 8333
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292453.

Examples

			303 has more 3's than any other digit, whereas both 3003 and 3013 have as many other digits as 3's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 9000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 3] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
    Select[Range[9000],DigitCount[#,10,3]>IntegerLength[#]/2&] (* Harvey P. Dale, Jun 17 2025 *)

Extensions

a(48) and following corrected by Georg Fischer, Dec 22 2022

A292736 Numbers in which 6 outnumbers all other digits together.

Original entry on oeis.org

6, 66, 166, 266, 366, 466, 566, 606, 616, 626, 636, 646, 656, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 676, 686, 696, 766, 866, 966, 1666, 2666, 3666, 4666, 5666, 6066, 6166, 6266, 6366, 6466, 6566, 6606, 6616, 6626, 6636, 6646, 6656, 6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669, 6676, 6686
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292456.

Examples

			606 has more 6's than any other digit, whereas both 6006 and 6016 have as many other digits as 6's.
		

Crossrefs

Programs

  • Maple
    F:= proc(d) local s, m, T;
      s:= 6*(10^d-1)/9;
      T:= select(`>=`,{seq(seq(seq(s+G(c,k), k = 0 .. 10^m-1),c = combinat:-choose([$0..d-1],m)),m=0 .. floor((d-1)/2))},10^(d-1));
      op(sort(convert(T,list)))
    end proc:
    G:= proc(c,k) local L,m,j;
          m:= nops(c);
          L:= convert(10^m+k,base,10);
          add((L[j]-6)*10^c[j], j=1..m)
    end proc:
    seq(F(d),d=1..4); # Robert Israel, Sep 24 2017
  • Mathematica
    Select[Range[0, 6700], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 6] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)

A292734 Numbers in which 4 outnumbers all other digits together.

Original entry on oeis.org

4, 44, 144, 244, 344, 404, 414, 424, 434, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 454, 464, 474, 484, 494, 544, 644, 744, 844, 944, 1444, 2444, 3444, 4044, 4144, 4244, 4344, 4404, 4414, 4424, 4434, 4440, 4441, 4442, 4443, 4444, 4445, 4446, 4447, 4448, 4449, 4454, 4464, 4474, 4484, 4494, 4544, 4644, 4744
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292454.

Examples

			404 has more 4's than any other digit, whereas both 4004 and 4014 have as many other digits as 4's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 4500], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 4] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
    Select[Range[5000],DigitCount[#,10,4]>IntegerLength[#]/2&] (* Harvey P. Dale, Nov 19 2019 *)

A292735 Numbers in which 5 outnumbers all other digits together.

Original entry on oeis.org

5, 55, 155, 255, 355, 455, 505, 515, 525, 535, 545, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 565, 575, 585, 595, 655, 755, 855, 955, 1555, 2555, 3555, 4555, 5055, 5155, 5255, 5355, 5455, 5505, 5515, 5525, 5535, 5545, 5550, 5551, 5552, 5553, 5554, 5555, 5556, 5557, 5558, 5559, 5565, 5575, 5585, 5595, 5655
Offset: 1

Views

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292455.

Examples

			505 has more 5's than any other digit, whereas both 5005 and 5015 have as many other digits as 5's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 6000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 5] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
    Select[Range[6000],DigitCount[#,10,5]>(IntegerLength[#]-DigitCount[#,10,5])&] (* Harvey P. Dale, May 08 2022 *)

A292738 Numbers in which 8 outnumbers all other digits together.

Original entry on oeis.org

8, 88, 188, 288, 388, 488, 588, 688, 788, 808, 818, 828, 838, 848, 858, 868, 878, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 898, 988, 1888, 2888, 3888, 4888, 5888, 6888, 7888, 8088, 8188, 8288, 8388, 8488, 8588, 8688, 8788, 8808, 8818, 8828, 8838, 8848, 8858, 8868, 8878, 8880, 8881, 8882, 8883, 8884, 8885, 8886, 8887, 8888
Offset: 1

Views

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Examples

			808 has more 8's than any other digit, whereas both 8008 and 8018 have as many other digits as 8's.
		

Crossrefs

Subset of A292458.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292737, A292739.

Programs

  • Mathematica
    Select[Range[0, 9000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 8] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)

A292737 Numbers in which 7 outnumbers all other digits together.

Original entry on oeis.org

7, 77, 177, 277, 377, 477, 577, 677, 707, 717, 727, 737, 747, 757, 767, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 787, 797, 877, 977, 1777, 2777, 3777, 4777, 5777, 6777, 7077, 7177, 7277, 7377, 7477, 7577, 7677, 7707, 7717, 7727, 7737, 7747, 7757, 7767, 7770, 7771, 7772, 7773, 7774, 7775, 7776, 7777, 7778
Offset: 1

Views

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Examples

			707 has more 7's than any other digit, whereas both 7007 and 7017 have as many other digits as 7's.
		

Crossrefs

Subset of A292457.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292738, A292739.

Programs

  • Mathematica
    Select[Range[0, 8000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 7] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)
Showing 1-9 of 9 results.