A301419
a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 - n*j*x).
Original entry on oeis.org
1, 1, 3, 19, 201, 3176, 69823, 2026249, 74565473, 3376695763, 183991725451, 11854772145800, 890415496931689, 77023751991841669, 7592990698770559111, 845240026276785888451, 105409073489605774592897, 14625467507717709778793020, 2244123413703647502288608467, 378751257186051653931253015229
Offset: 0
Cf.
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A008277,
A075506,
A075507,
A075508,
A075509,
A242817,
A292914,
A318183.
-
List([0..20],n->Sum([0..n],k->n^(n-k)*Stirling2(n,k))); # Muniru A Asiru, Mar 20 2018
-
Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]]
Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]]
(* Or: *)
A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]];
Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
-
a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018
A307066
a(n) = exp(-1) * Sum_{k>=0} (n*k + 1)^n/k!.
Original entry on oeis.org
1, 2, 13, 199, 5329, 216151, 12211597, 909102342, 85761187393, 9957171535975, 1390946372509101, 229587693339867567, 44117901231194922193, 9748599124579281064294, 2451233017637221706477037, 695088863051920283838281851, 220558203335628758134165860609
Offset: 0
-
A307066:= func< n | (&+[Binomial(n,k)*n^k*Bell(k): k in [0..n]]) >;
[A307066(n): n in [0..31]]; // G. C. Greubel, Jan 24 2024
-
Table[Exp[-1] Sum[(n k + 1)^n/k!, {k, 0, Infinity}], {n, 0, 16}]
Table[n! SeriesCoefficient[Exp[Exp[n x] + x - 1], {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[Binomial[n, k] n^k BellB[k], {k, 0, n}], {n, 1, 16}]]
-
def A307066(n): return sum(binomial(n,k)*n^k*bell_number(k) for k in range(n+1))
[A307066(n) for n in range(31)] # G. C. Greubel, Jan 24 2024
A330605
a(n) = exp(-1) * Sum_{k>=0} (n*k - 1)^n / k!.
Original entry on oeis.org
1, 0, 5, 89, 2737, 121399, 7316101, 572218716, 56142822849, 6731180810945, 965898950508901, 163116461798211503, 31969444766902475185, 7187057932197297484108, 1834860441330563739401765, 527403671798720265634312349, 169396494914472404237224898305
Offset: 0
-
Table[Exp[-1] Sum[(n k - 1)^n/k!, {k, 0, Infinity}], {n, 0, 16}]
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] n^k BellB[k], {k, 0, n}], {n, 1, 16}]]
Table[n! SeriesCoefficient[Exp[Exp[n x] - x - 1], {x, 0, n}], {n, 0, 16}]
A295552
a(n) = n! * [x^n] exp(x*exp(n*x)).
Original entry on oeis.org
1, 1, 5, 46, 689, 15476, 483157, 19719022, 1009495489, 63119450152, 4728073048901, 417482964953594, 42834647403146161, 5043607239173464924, 674409403861210214485, 101517071981284179924526, 17074451852556909059698433, 3187883879639402167714593488, 656838643288782957496595002117
Offset: 0
-
Table[n! SeriesCoefficient[Exp[x Exp[n x]], {x, 0, n}], {n, 0, 18}]
Join[{1}, Table[Sum[Binomial[n, k] (n k)^(n - k), {k, 0, n}], {n, 1, 18}]]
A292913
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(k*x)-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 15, 0, 1, 5, 32, 135, 240, 52, 0, 1, 6, 50, 320, 1215, 1664, 203, 0, 1, 7, 72, 625, 3840, 12636, 12992, 877, 0, 1, 8, 98, 1080, 9375, 53248, 147987, 112256, 4140, 0, 1, 9, 128, 1715, 19440, 162500, 831488, 1917999, 1059840, 21147, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + 2*k^2*x^2/2! + 5*k^3*x^3/3! + 15*k^4 x^4/4! + 52*k^5*x^5/5! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 15, 240, 1215, 3840, 9375, ...
0, 52, 1664, 12636, 53248, 162500, ...
-
A:= (n, k)-> k^n * combinat[bell](n):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 26 2017
-
Table[Function[k, n! SeriesCoefficient[Exp[Exp[k x] - 1], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-((-1)^(i + 1) (i - 1) + i + 3) k x/4, 1, {i, 0, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A308330
a(n) = n! * [x^n] exp(exp(n*x)/(1 - x) - 1).
Original entry on oeis.org
1, 2, 19, 346, 10217, 441226, 26023123, 1998840586, 193094418161, 22841006706928, 3239088790361491, 541309430523114804, 105106521730010262745, 23431755937256853296514, 5936989025261397848036755, 1694791457312643753292004446, 540937403928198054978670965089
Offset: 0
-
Table[n! SeriesCoefficient[Exp[Exp[n x]/(1 - x) - 1], {x, 0, n}], {n, 0, 16}]
A308331
a(n) = n! * [x^n] exp(exp(n*x)/(1 + x) - 1).
Original entry on oeis.org
1, 0, 3, 50, 1449, 61724, 3608515, 275520972, 26505128433, 3125830471928, 442286373458691, 73789189395157730, 14309059313820886681, 3186711239965235356776, 806772967716453793227523, 230153293624841114893344854, 73420355768107554901016231265
Offset: 0
-
Table[n! SeriesCoefficient[Exp[Exp[n x]/(1 + x) - 1], {x, 0, n}], {n, 0, 16}]
Showing 1-7 of 7 results.