cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A285425 Square array A(n,k), n>=1, k>=0, read by antidiagonals, where column k is the expansion of Sum_{j>=1} (2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 1, 2, 1, 1, 28, 1, 6, 2, 1, 1, 82, 1, 26, 4, 2, 1, 1, 244, 1, 126, 10, 8, 1, 1, 1, 730, 1, 626, 28, 50, 1, 3, 1, 1, 2188, 1, 3126, 82, 344, 1, 13, 2, 1, 1, 6562, 1, 15626, 244, 2402, 1, 91, 6, 2, 1, 1, 19684, 1, 78126, 730, 16808, 1, 757, 26, 12, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2017

Keywords

Comments

A(n,k) is the sum of k-th powers of odd divisors of n.

Examples

			Square array begins:
1,  1,   1,    1,    1,     1,  ...
1,  1,   1,    1,    1,     1,  ...
2,  4,  10,   28,   82,   244,  ...
1,  1,   1,    1,    1,     1,  ...
2,  6,  26,  126,  626,  3126,  ...
2,  4,  10,   28,   82,   244,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(2 i - 1)^k x^(2 i - 1)/(1 - x^(2 i - 1)), {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 1, j}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} (2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)).

Extensions

Offset changed by Ilya Gutkovskiy, Oct 25 2018

A321259 a(n) = sigma_n(n) - n^n.

Original entry on oeis.org

0, 1, 1, 17, 1, 794, 1, 65793, 19684, 9766650, 1, 2194095090, 1, 678223089234, 30531927033, 281479271743489, 1, 150196195641350171, 1, 100000096466944316978, 558545874543637211, 81402749386839765307626, 1, 79501574308536809523296482, 298023223876953126
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 01 2018

Keywords

Comments

a(n) is the sum of n-th powers of proper divisors of n.

Crossrefs

Programs

  • Magma
    [DivisorSigma(n, n) - n^n: n in [1..30]]; // Vincenzo Librandi, Nov 02 2018
    
  • Mathematica
    Table[DivisorSigma[n, n] - n^n, {n, 25}]
    nmax = 25; Rest[CoefficientList[Series[Sum[(k x)^(2 k)/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sigma(n, n) - n^n; \\ Michel Marcus, Nov 02 2018

Formula

G.f.: Sum_{k>=1} (k*x)^(2*k)/(1 - (k*x)^k).
a(n) = A023887(n) - A000312(n).
a(n) = A321258(n,n).
a(n) = 1 if n is prime.

A318968 Expansion of exp(Sum_{k>=1} ( Sum_{d|k, d odd} d^k ) * x^k/k).

Original entry on oeis.org

1, 1, 1, 10, 10, 635, 797, 118446, 124071, 43174194, 45404910, 25982930761, 26443958420, 23324558686914, 23640266984002, 29216576615057082, 29447535265299613, 48690644491136860817, 48980258924147884960, 104176334607664412086539, 104636388540330684649083, 278323070872780066332365486
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[Mod[d, 2] d^k, {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    nmax = 21; CoefficientList[Series[Product[1/(1 - (2 k - 1)^(2 k - 1) x^(2 k - 1))^(1/(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Mod[d, 2] d^k, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]

Formula

G.f.: Product_{k>=1} 1/(1 - (2*k - 1)^(2*k-1)*x^(2*k-1))^(1/(2*k-1)).

A363590 a(n) = Sum_{d|n, d odd} d^d.

Original entry on oeis.org

1, 1, 28, 1, 3126, 28, 823544, 1, 387420517, 3126, 285311670612, 28, 302875106592254, 823544, 437893890380862528, 1, 827240261886336764178, 387420517, 1978419655660313589123980, 3126, 5842587018385982521381947992, 285311670612
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2023

Keywords

Comments

Not multiplicative: a(3)*a(5) != a(15), for example.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# &, OddQ[#] &]; Array[a, 20] (* Amiram Eldar, Jul 26 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2==1)*d^d);
    
  • Python
    from sympy import divisors
    def A363590(n): return sum(d**d for d in divisors(n>>(~n & n-1).bit_length(),generator=True)) # Chai Wah Wu, Jul 09 2023

Formula

G.f.: Sum_{k>0} ((2*k-1) * x)^(2*k-1) / (1 - x^(2*k-1)).
a(2^n) = 1.
Showing 1-4 of 4 results.