cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A330260 a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
    

Formula

a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselI(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019

A318224 a(n) = n! * [x^n] exp(x/(1 + n*x)).

Original entry on oeis.org

1, 1, -3, 37, -1007, 47901, -3514499, 367671697, -51952729023, 9529552851193, -2201241933756899, 625136460673954461, -214066473170125310063, 86976878219664125966677, -41368038169392401671082787, 22767783580493235411255966601, -14356419990032448099044028030719
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x/(1 + n x)], {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n - 1, k - 1] n!/k!, {k, n}], {n, 16}]]
    Join[{1}, Table[(-1)^(n + 1) n^n (n - 1)! Hypergeometric1F1[1 - n, 2, 1/n], {n, 16}]]
    Flatten[{1, Table[-(-1)^n * n^(n-1) * (n-1)! * LaguerreL[n-1, 1, 1/n], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 21 2018 *)

Formula

a(n) = n! * [x^n] Product_{k>=1} exp((-n)^(k-1)*x^k).
a(n) = Sum_{k=0..n} (-n)^(n-k)*binomial(n-1,k-1)*n!/k!.
a(n) ~ -(-1)^n * c * n^(2*n - 1/2) / exp(n), where c = BesselJ(1,2) * sqrt(2*Pi) = 1.44563470980450699365002928132323794056211645203313522173628289... - Vaclav Kotesovec, Aug 21 2018

A341033 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-k*x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 13, 1, 1, 1, 7, 37, 73, 1, 1, 1, 9, 73, 361, 501, 1, 1, 1, 11, 121, 1009, 4361, 4051, 1, 1, 1, 13, 181, 2161, 17341, 62701, 37633, 1, 1, 1, 15, 253, 3961, 48081, 355951, 1044205, 394353, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2021

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,      1, ...
  1,   1,    1,     1,     1,      1, ...
  1,   3,    5,     7,     9,     11, ...
  1,  13,   37,    73,   121,    181, ...
  1,  73,  361,  1009,  2161,   3961, ...
  1, 501, 4361, 17341, 48081, 108101, ...
		

Crossrefs

Main diagonal gives A293146.

Programs

  • Mathematica
    T[0, k_] = 1; T[n_, k_] := n!*Sum[If[k == n - j == 0, 1, k^(n - j)]*Binomial[n - 1, j - 1]/j!, {j, 1, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 03 2021 *)
  • PARI
    {T(n, k) = if(n==0, 1, n!*sum(j=1, n, k^(n-j)*binomial(n-1, j-1)/j!))}
    
  • PARI
    {T(n, k) = if(n<2, 1, (2*k*n-2*k+1)*T(n-1, k)-k^2*(n-1)*(n-2)*T(n-2, k))}

Formula

T(n,k) = Sum_{j=1..n} k^(n-j) * (n!/j!) * binomial(n-1,j-1) for n > 0.
T(n,k) = (2*k*n-2*k+1) * T(n-1,k) - k^2 * (n-1) * (n-2) * T(n-2,k) for n > 1.

A341056 a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - x).

Original entry on oeis.org

1, 2, 9, 106, 2801, 132426, 9705577, 1015001954, 143392421601, 26298332570386, 6074043257989001, 1724846814877790682, 590605908915568818769, 239956225437223244619866, 114123836188192016600789481, 62808518765936960824453590226, 39603421893790601518269204039617
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2021

Keywords

Examples

			a(3) = 3! * (1 + 1/1! + 7/2! + 73/3!) = 106.
		

Crossrefs

Programs

  • Mathematica
    Table[n!*(1 + Sum[Sum[n^(j-k)*Binomial[j-1, k-1]/k!, {k, 1, j}], {j, 1, n}]), {n, 0, 20}] (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    {a(n) = n!*(1+sum(j=1, n, sum(k=1, j, n^(j-k)*binomial(j-1, k-1)/k!)))}

Formula

a(n) = n! * Sum_{k=0..n} A341033(k,n)/k! = n! * (1 + Sum_{j=1.. n} Sum_{k=1.. j} n^(j-k) * binomial(j-1,k-1)/k!).
a(n) ~ BesselI(1,2) * n! * n^(n-1). - Vaclav Kotesovec, Feb 14 2021
Showing 1-4 of 4 results.