cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293686 8-digit numbers (padded with leading zeros where necessary) in which the sum of the number consisting of the first four digits and the number consisting of the last four digits equals the number consisting of the middle four digits.

Original entry on oeis.org

0, 10099, 10100, 20199, 20200, 30299, 30300, 40399, 40400, 50499, 50500, 60599, 60600, 70699, 70700, 80799, 80800, 90899, 90900, 100999, 101000, 111099, 111100, 121199, 121200, 131299, 131300, 141399, 141400, 151499, 151500, 161599, 161600, 171699, 171700
Offset: 1

Views

Author

Harvey P. Dale, Oct 14 2017

Keywords

Comments

Zero can be a leading digit.
The sequence is the 8-digit analog to A263194.
This sequence contains 5050 terms. - David A. Corneth, Oct 14 2017

Examples

			131299 is a term because 0013 + 1299 = 1312 and 1312 is the string of the middle four digits of 00131299.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^5] | (n div 10000+n) mod 10000 eq (n div 100) mod 10000]; // Vincenzo Librandi, Oct 15 2017
    
  • Mathematica
    dn8Q[n_]:=Module[{d=PadLeft[IntegerDigits[n],8,0]},FromDigits[ d[[1;;4]]]+ FromDigits[ d[[5;;8]]]==FromDigits[d[[3;;6]]]]; Select[Range[ 0,10^6], dn8Q]
  • PARI
    is(n) = n < 10^8 && n\10000 + n%10000 == (n \ 100) % 10000 \\ David A. Corneth, Oct 14 2017
    
  • PARI
    seq() = {my(t = 0, res = List(), c1, c2); while(t < 10^8, listput(res, t); c2 = (t\10000)%100; if(c2 < 99, t+= 10100, c1 = t\10^6; t = (c1+1)*10^6 + (c1 + 2)*10^4 + 98 - c1)); for(i=2, #res, if(res[i] > 10^6, listsort(res); return(res)); listput(res, res[i]-1))} \\ (this program produces the full sequence) David A. Corneth, Oct 16 2017