cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294070 a(n) = (1/4)*(n^2 - 2*n)^2 + (9/4)*(n^2 - 2*n) + 6.

Original entry on oeis.org

4, 6, 15, 40, 96, 204, 391, 690, 1140, 1786, 2679, 3876, 5440, 7440, 9951, 13054, 16836, 21390, 26815, 33216, 40704, 49396, 59415, 70890, 83956, 98754, 115431, 134140, 155040, 178296, 204079, 232566, 263940, 298390, 336111, 377304, 422176, 470940, 523815
Offset: 1

Views

Author

Jan Lakota Nono, Aug 14 2018

Keywords

Examples

			2*2, 2*3, 3*5, 5*8, 8*12, 12*17, 17*23, 23*30, 30*38, ...
		

Crossrefs

Programs

  • GAP
    List([1..40],n->(n^2-3*n+6)*(n^2-n+4)/4); # Muniru A Asiru, Aug 16 2018
    
  • Magma
    [(n^2-3*n+6)*(n^2-n+4)/4: n in [1..40]]; // Vincenzo Librandi, Aug 30 2018
    
  • Maple
    b:=n->(n^2-3*n+6)/2: seq(b(n)*b(n+1),n=1..40); # Muniru A Asiru, Aug 16 2018
  • Mathematica
    Times@@@Partition[Array[(#^2 -3# +6)/2 &, 40], 2, 1] (* Michael De Vlieger, Sep 24 2018 *)
    LinearRecurrence[{5,-10,10,-5,1}, {4,6,15,40,96}, 40] (* G. C. Greubel, Feb 10 2019 *)
  • PARI
    Vec(x*(4 - 14*x + 25*x^2 - 15*x^3 + 6*x^4)/(1-x)^5 + O(x^40)) \\ Colin Barker, Nov 26 2018
    
  • Sage
    [(n^2-3*n+6)*(n^2-n+4)/4 for n in (1..40)] # G. C. Greubel, Feb 10 2019

Formula

a(n) = A152948(n) * A152948(n+1).
From Muniru A Asiru, Aug 16 2018: (Start)
a(n) = (n^2 - 3*n + 6)*(n^2 - n + 4)/4.
a(n) = A152948(n)*A027689(n-1)/2. (End)
a(n) = A266883(A061925(n-1)). - Bruno Berselli, Aug 30 2018
From Colin Barker, Nov 26 2018: (Start)
G.f.: x*(4 - 14*x + 25*x^2 - 15*x^3 + 6*x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
a(n) = (24 - 18*n + 13*n^2 - 4*n^3 + n^4)/4. (End)
E.g.f.: (1/4)*exp(x)*(16 + 8*x + 14*x^2 + 6*x^3 + x^4). - Stefano Spezia, Nov 30 2018