cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294327 a(n) = ((9*n + 8)*10^n - 8)/9.

Original entry on oeis.org

0, 18, 288, 3888, 48888, 588888, 6888888, 78888888, 888888888, 9888888888, 108888888888, 1188888888888, 12888888888888, 138888888888888, 1488888888888888, 15888888888888888, 168888888888888888, 1788888888888888888, 18888888888888888888, 198888888888888888888
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2017

Keywords

Crossrefs

Programs

  • PARI
    concat(0, Vec(18*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2) + O(x^30))) \\ Colin Barker, Oct 28 2017

Formula

From Colin Barker, Oct 28 2017: (Start)
G.f.: 18*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)

A294329 a(n) = 8*((9*n + 8)*10^n - 8)/81.

Original entry on oeis.org

0, 16, 256, 3456, 43456, 523456, 6123456, 70123456, 790123456, 8790123456, 96790123456, 1056790123456, 11456790123456, 123456790123456, 1323456790123456, 14123456790123456, 150123456790123456, 1590123456790123456, 16790123456790123456, 176790123456790123456
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{21,-120,100},{0,16,256},20] (* Harvey P. Dale, Aug 19 2018 *)
  • PARI
    concat(0, Vec(16*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2) + O(x^30))) \\ Colin Barker, Oct 28 2017

Formula

a(n) = (8/9) * A294327(n) = 8 * A294328(n).
From Colin Barker, Oct 28 2017: (Start)
G.f.: 16*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)

A104720 Expansion of 1/((1-x)(1-x^2)(1-10x)).

Original entry on oeis.org

1, 11, 112, 1122, 11223, 112233, 1122334, 11223344, 112233445, 1122334455, 11223344556, 112233445566, 1122334455667, 11223344556677, 112233445566778, 1122334455667788, 11223344556677889, 112233445566778899, 1122334455667789000, 11223344556677890010, 112233445566778900111, 1122334455667789001121
Offset: 0

Views

Author

Paul Barry, Mar 20 2005

Keywords

Comments

Partial sums of A056830(n+1).

Examples

			From _Seiichi Manyama_, Sep 29 2018: (Start)
   1                  * 8 + 0  = 8;
   11                 * 8 + 1  = 89;
   112                * 8 + 1  = 897;
   1122               * 8 + 2  = 8978;
   11223              * 8 + 2  = 89786;
   112233             * 8 + 3  = 897867;
   1122334            * 8 + 3  = 8978675;
   11223344           * 8 + 4  = 89786756;
   112233445          * 8 + 4  = 897867564;
   1122334455         * 8 + 5  = 8978675645;
   11223344556        * 8 + 5  = 89786756453;
   112233445566       * 8 + 6  = 897867564534;
   1122334455667      * 8 + 6  = 8978675645342;
   11223344556677     * 8 + 7  = 89786756453423;
   112233445566778    * 8 + 7  = 897767564534231;
   1122334455667788   * 8 + 8  = 8978675645342312;
   11223344556677889  * 8 + 8  = 89786756453423120;
   112233445566778899 * 8 + 9  = 897867564534231201.
   1                  * 9 + 1  = 10;
   11                 * 9 + 2  = 101;
   112                * 9 + 2  = 1010;
   1122               * 9 + 3  = 10101;
   11223              * 9 + 3  = 101010;
   112233             * 9 + 4  = 1010101;
   1122334            * 9 + 4  = 10101010;
   11223344           * 9 + 5  = 101010101;
   112233445          * 9 + 5  = 1010101010;
   1122334455         * 9 + 6  = 10101010101;
   11223344556        * 9 + 6  = 101010101010;
   112233445566       * 9 + 7  = 1010101010101;
   1122334455667      * 9 + 7  = 10101010101010;
   11223344556677     * 9 + 8  = 101010101010101;
   112233445566778    * 9 + 8  = 1010101010101010;
   1122334455667788   * 9 + 9  = 10101010101010101;
   11223344556677889  * 9 + 9  = 101010101010101010;
   112233445566778899 * 9 + 10 = 1010101010101010101. (End)
		

Crossrefs

Programs

  • GAP
    List([0..25],n->1000*10^n/891+(-1)^n/44-(18*n+47)/324); # Muniru A Asiru, Sep 29 2018
  • Maple
    seq(coeff(series(((1-x)*(1-x^2)*(1-10*x))^(-1),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    a[n_]:=1000*10^n/891 + (-1)^n/44 - (18*n + 47)/324 ; Array[a,50,0] (* or *)
    a[n_]:=Floor[(2*10^(n + 3) - 99*n)/1782]; Array[a,50,0] (* Stefano Spezia, Sep 01 2018 *)
    LinearRecurrence[{11,-9,-11,10},{1,11,112,1122},30] (* Harvey P. Dale, Jun 20 2021 *)

Formula

a(n) = 1000*10^n/891 + (-1)^n/44 - (18n+47)/324.
a(n) = floor((2*10^(n+3) - 99n)/1782). - Hieronymus Fischer, Dec 05 2006
a(n) = 10*a(n-1) + (2*n + 3 + (-1)^n)/4, a(0)=1, a(1)=11. - Vincenzo Librandi, Mar 22 2011

A294344 a(n) = ((-9*n + 82)*10^n - 1)/81.

Original entry on oeis.org

1, 9, 79, 679, 5679, 45679, 345679, 2345679, 12345679, 12345679, -987654321, -20987654321, -320987654321, -4320987654321, -54320987654321, -654320987654321, -7654320987654321, -87654320987654321, -987654320987654321, -10987654320987654321, -120987654320987654321
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2017

Keywords

Examples

			Curious multiplications:
         9 * 8 =       72;
        79 * 8 =      632;
       679 * 8 =     5432;
      5679 * 8 =    45432;
     45679 * 8 =   365432;
    345679 * 8 =  2765432;
   2345679 * 8 = 18765432.
         9 * 9 =       81;
        79 * 9 =      711;
       679 * 9 =     6111;
      5679 * 9 =    51111;
     45679 * 9 =   411111;
    345679 * 9 =  3111111;
   2345679 * 9 = 21111111.
		

Crossrefs

Cf. A294328.

Programs

  • Mathematica
    LinearRecurrence[{21,-120,100},{1,9,79},30] (* Harvey P. Dale, Mar 12 2018 *)
  • PARI
    Vec((1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2) + O(x^30)) \\ Colin Barker, Oct 29 2017

Formula

From Colin Barker, Oct 29 2017: (Start)
G.f.: (1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)
Showing 1-4 of 4 results.