cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294567 a(n) = Sum_{d|n} d^(1 + 2*n/d).

Original entry on oeis.org

1, 9, 28, 97, 126, 588, 344, 2049, 2917, 6174, 1332, 53764, 2198, 52320, 258648, 430081, 4914, 2463429, 6860, 8352582, 15181712, 8560308, 12168, 242240964, 48843751, 134606598, 1167064120, 1651526120, 24390, 14202123408, 29792, 25905102849, 94162701936
Offset: 1

Views

Author

Seiichi Manyama, Nov 02 2017

Keywords

Comments

If p is prime, a(p) = 1 + p^3. - Robert Israel, Nov 03 2017

Crossrefs

Column k=2 of A294579.
Cf. A292164.

Programs

  • Maple
    f:= n -> add(d^(1+2*n/d),d=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Nov 03 2017
  • Mathematica
    sd[n_] := Module[{d = Divisors[n]}, Total[d^(1 + (2 n)/d)]]; Array[sd,40] (* Harvey P. Dale, Mar 17 2020 *)
    a[n_] := DivisorSum[n, #^(1 + 2*n/#) &]; Array[a, 33] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^(1+2*n/d)); \\ Michel Marcus, Nov 02 2017
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^3*x^k/(1-k^2*x^k))) \\ Seiichi Manyama, Jan 14 2023

Formula

L.g.f.: -log(Product_{k>=1} (1 - k^2*x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 12 2018
G.f.: Sum_{k>0} k^3 * x^k / (1 - k^2 * x^k). - Seiichi Manyama, Jan 14 2023