cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295431 a(n) = (12*n)!*n! / ((6*n)!*(4*n)!*(3*n)!).

Original entry on oeis.org

1, 4620, 89237148, 2005604901300, 47913489552349980, 1183237138556438547120, 29836408028165719837829700, 763223193205837155576920270520, 19728995249931089572476730815356700, 514073874001824145407534840409364592528, 13479596359042448208364688886016106250225648
Offset: 0

Views

Author

Gheorghe Coserea, Nov 22 2017

Keywords

Comments

From Peter Bala, Jan 24 2020: (Start)
a(p^k) == a(p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integer k (write a(n) as C(12*n,6*n)*C(6*n,3*n)/C(4*n,n) and use Mestrovic, equation 39, p. 12).
More generally, for this sequence and the other integer factorial ratio sequences listed in the cross references, the congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) may hold for any prime p >= 5 and any positive integers n and k. (End)
a(n*p) == a(n) ( mod p^3 ) are proved for all such sequences in Section 5 of Zudilin's article. - Wadim Zudilin, Jul 30 2021

Crossrefs

The 52 sporadic integral factorial ratio sequences:
Idx EntryID u(r,s) dFd-1
---+---------+--------------+-----------------------------------------------+
1 A295431 [12,1] [1/12,5/12,7/12,11/12]
[6,4,3] [1/3,1/2,2/3]
2 A295432 [12,3,2] [1/12,5/12,7/12,11/12]
[6,6,4,1] [1/6,1/2,5/6]
3 A295433 [12,1] [1/12,1/6,5/12,7/12,5/6,11/12]
[8,3,2] [1/8,3/8,1/2,5/8,7/8]
4 A295434 [12,3] [1/12,1/3,5/12,7/12,2/3,11/12]
[8,6,1] [1/8,3/8,1/2,5/8,7/8]
5 A295435 [12,3] [1/12,1/3,5/12,7/12,2/3,11/12]
[6,5,4] [1/5,2/5,1/2,3/5,4/5]
6 A295436 [12,5] [1/12,1/6,5/12,7/12,5/6,11/12]
[10,4,3] [1/10,3/10,1/2,7/10,9/10]
7 A295437 [18,1] [1/18,5/18,7/18,11/18,13/18,17/18]
[9,6,4] [1/4,1/3,1/2,2/3,3/4]
8 A295438 [9,2] [1/9,2/9,4/9,5/9,7/9,8/9]
[6,4,1] [1/6,1/4,1/2,3/4,5/6]
9 A295439 [9,4] [1/9,2/9,4/9,5/9,7/9,8/9]
[8,3,2] [1/8,3/8,1/2,5/8,7/8]
10 A295440 [18,4,3] [1/18,5/18,7/18,11/18,13/18,17/18]
[9,8,6,2] [1/8,3/8,1/2,5/8,7/8]
11 A295441 [9,1] [1/9,2/9,4/9,5/9,7/9,8/9]
[5,3,2] [1/5,2/5,1/2,3/5,4/5]
12 A295442 [18,5,3] [1/18,5/18,7/18,11/18,13/18,17/18]
[10,9,6,1] [1/10,3/10,1/2,7/10,9/10]
13 A295443 [18,4] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
[12,9,1] [1/12,1/3,5/12,7/12,2/3,11/12]
14 A295444 [12,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
[9,4,1] [1/9,2/9,4/9,5/9,7/9,8/9]
15 A295445 [18,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
[9,6,5] [1/5,1/3,2/5,3/5,2/3,4/5]
16 A295446 [10,6] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]
[9,5,2] [1/9,2/9,4/9,5/9,7/9,8/9]
17 A295447 [14,3] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
[9,7,1] [1/9,2/9,4/9,5/9,7/9,8/9]
18 A295448 [18,3,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
[9,7,6,1] [1/7,2/7,3/7,4/7,5/7,6/7]
19 A295449 [12,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
[7,4,3] [1/7,2/7,3/7,4/7,5/7,6/7]
20 A295450 [14,6,4] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
[12,7,3,2] [1/12,1/3,5/12,7/12,2/3,11/12]
21 A295451 [14,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
[7,5,3] [1/5,1/3,2/5,3/5,2/3,4/5]
22 A295452 [10,6,1] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]
[7,5,3,2] [1/7,2/7,3/7,4/7,5/7,6/7]
23 A295453 [15,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[9,5,2] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]
24 A295454 [30,9,5] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[18,15,10,1] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
25 A295455 [15,4] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[12,5,2] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
26 A295456 [30,5,4] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,12,10,2] [1/12,1/3,5/12,1/2,7/12,2/3,11/12]
27 A295457 [15,4] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[8,6,5] [1/8,1/6,3/8,1/2,5/8,5/6,7/8]
28 A295458 [30,5,4] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,8,6] [1/8,1/3,3/8,1/2,5/8,2/3,7/8]
29 A295459 [15,2] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[10,4,3] [1/10,1/4,3/10,1/2,7/10,3/4,9/10]
30 A295460 [30,3,2] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,6,4] [1/5,1/4,2/5,1/2,3/5,3/4,4/5]
31 A211417 [30,1] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,6] [1/5,1/3,2/5,1/2,3/5,2/3,4/5]
32 A295462 [15,2] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[10,6,1] [1/10,1/6,3/10,1/2,7/10,5/6,9/10]
33 A295463 [15,7] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[14,5,3] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
34 A295464 [30,5,3] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,7,6] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]
35 A295465 [30,5,3] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,12,10,1] [1/12,1/4,5/12,1/2,7/12,3/4,11/12]
36 A295466 [15,6,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[12,5,3,2] [1/12,1/4,5/12,1/2,7/12,3/4,11/12]
37 A295467 [15,1] [1/15,2/15,4/15,7/15,8/15,11/15,13/15,14/15]
[8,5,3] [1/8,1/4,3/8,1/2,5/8,3/4,7/8]
38 A295468 [30,5,3,2] [1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30]
[15,10,8,6,1] [1/8,1/4,3/8,1/2,5/8,3/4,7/8]
39 A295469 [20,3] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[12,10,1] [1/12,1/6,5/12,1/2,7/12,5/6,11/12]
40 A295470 [20,6,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[12,10,3,2] [1/12,1/3,5/12,1/2,7/12,2/3,11/12]
41 A295471 [20,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,8,3] [1/8,1/3,3/8,1/2,5/8,2/3,7/8]
42 A295472 [20,3,2] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,8,6,1] [1/8,1/6,3/8,1/2,5/8,5/6,7/8]
43 A061164 [20,1] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,7,4] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]
44 A295474 [20,7,2] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[14,10,4,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
45 A295475 [20,3] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[10,9,4] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]
46 A295476 [20,9,6] [1/20,3/20,7/20,9/20,11/20,13/20,17/20,19/20]
[18,10,4,3] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
47 A295477 [24,1] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,8,5] [1/5,1/4,2/5,1/2,3/5,3/4,4/5]
48 A295478 [24,5,2] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,10,8,1] [1/10,1/4,3/10,1/2,7/10,3/4,9/10]
49 A295479 [24,4,1] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,8,7,2] [1/7,2/7,3/7,1/2,4/7,5/7,6/7]
50 A295480 [24,7,4] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[14,12,8,1] [1/14,3/14,5/14,1/2,9/14,11/14,13/14]
51 A295481 [24,4,3] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[12,9,8,2] [1/9,2/9,4/9,1/2,5/9,7/9,8/9]
52 A295482 [24,9,6,4] [1/24,5/24,7/24,11/24,13/24,17/24,19/24,23/24]
[18,12,8,3,2] [1/18,5/18,7/18,1/2,11/18,13/18,17/18]
Cf. A304126.

Programs

  • Maple
    seq((12*n)!*n!/((6*n)!*(4*n)!*(3*n)!),n=0..10); # Karol A. Penson, May 08 2018
  • Mathematica
    Table[((12n)!n!)/((6n)!(4n)!(3n)!),{n,0,20}] (* Harvey P. Dale, Sep 14 2019 *)
  • PARI
    r=[12,1]; s=[6,4,3];
    p=[1/12,5/12,7/12,11/12]; q=[1/3,1/2,2/3];
    C(r,s) = prod(k=1, #r, r[k]^r[k])/prod(k=1, #s, s[k]^s[k]);
    u(r, s, N=20) = {
      my(f=(v,n)->prod(k=1, #v, (v[k]*n)!));
      apply(n->f(r,n)/f(s,n), [0..N-1]);
    };
    u(r,s,11)
    \\ test 1:
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N=200; x='x+O('x^N); u(r,s,N) == Vec(hypergeom(p, q, C(r,s)*x, N))
    \\ test 2: check consistency of all parameters
    system("wget https://oeis.org/A295431/a295431.txt");
    N=200; x='x+O('x^N); w = read("a295431.txt");
    52==vecsum(vector(#w, n, u(w[n][1], w[n][2], N) == Vec(hypergeom(w[n][3], w[n][4], C(w[n][1], w[n][2])*x, N))))

Formula

G.f.: hypergeom([1/12, 5/12, 7/12, 11/12], [1/3, 1/2, 2/3], 27648*x).
From Karol A. Penson, May 08 2018 (Start):
Asymptotics: a(n) ~ (2^n)^10*(3^n)^3*sqrt(3/n)*(2592*n^2+72*n+1)/(15552*n^2*sqrt(Pi)), for n->infinity.
Integral representation as the n-th moment of the positive function V(x) on x = (0, 27648), i.e. in Maple notation: a(n) = int(x^n*V(x), x = 0..27648), n=0,1..., where V(x) = 3^(3/4)*sqrt(2)*hypergeom([1/12, 5/12, 7/12, 3/4], [1/6, 1/2, 2/3], (1/27648)*x)*GAMMA(3/4)/(36*sqrt(Pi)*x^(11/12)*GAMMA(2/3)*GAMMA(7/12))+3^(1/4)*sqrt(2)*cos(5*Pi*(1/12))*GAMMA(2/3)*csc((1/12)*Pi)*GAMMA(3/4)*hypergeom([5/12, 3/4, 11/12, 13/12], [1/2, 5/6, 4/3], (1/27648)*x)/(4608*Pi^(3/2)*GAMMA(11/12)*x^(7/12))+3^(1/4)*cos(5*Pi*(1/12))*GAMMA(11/12)*hypergeom([7/12, 11/12, 13/12, 5/4], [2/3, 7/6, 3/2], (1/27648)*x)/(6912*sqrt(Pi)*GAMMA(2/3)*GAMMA(3/4)*x^(5/12))+7*3^(3/4)*sin(5*Pi*(1/12))*GAMMA(2/3)*GAMMA(7/12)*hypergeom([11/12, 5/4, 17/12, 19/12], [4/3, 3/2, 11/6], (1/27648)*x)/(2654208*Pi^(3/2)*GAMMA(3/4)*x^(1/12)). The function V(x) is singular at both edges of its support and is U-shaped. The function V(x) is unique as it is the solution of the Hausdorff moment problem. (End)
D-finite with recurrence: n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -24*(12*n-11)*(12*n-1)*(12*n-5)*(12*n-7)*a(n-1)=0. - R. J. Mathar, Jan 27 2020

A347858 a(n) = (9*n)!/((3*n)!*(2*n)!) * (n/2)!/(9*n/2)!.

Original entry on oeis.org

1, 512, 1021020, 2399141888, 6016814703900, 15626259253952512, 41477110789150966020, 111745115394167694950400, 304331361887290342345862940, 835666006020766806513664655360, 2309513382640863232775760738593520, 6416034331756986890806503962421755904
Offset: 0

Views

Author

Peter Bala, Sep 19 2021

Keywords

Comments

Fractional factorials are defined using the Gamma function; for example, (9*n/2)! := Gamma(1 + 9*n/2).
The sequence defined by u(n) = (18*n)!*(n)!/((4*n)!*(6*n)!*(9*n)!) is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 7). See A295437. Here we are essentially considering the sequence (u(n/2))n>=0. The sequence is conjectured to be integral.

Examples

			Congruence: a(11) - a(1) = 6416034331756986890806503962421755904 - 512 = (2^9)*(11^3)*7207*1306363809854375553476366323 == 0 (mod 11^3).
		

Crossrefs

Programs

  • Maple
    seq( (9*n)!/((3*n)!*(2*n)!) * GAMMA(1+n/2)/GAMMA(1+9*n/2), n = 0..11);
  • Python
    from math import factorial
    from sympy import factorial2
    def A347858(n): return int((factorial(9*n)*factorial2(n)<<(n<<2))//(factorial(3*n)*factorial(n<<1)*factorial2(9*n))) # Chai Wah Wu, Aug 10 2023

Formula

a(n) = binomial(9*n,3*n)*binomial(6*n,2*n)/binomial(9*n/2,4*n).
a(2*n) = A295437(n).
a(2*n) = 72*(18*n-1)*(18*n-5)*(18*n-7)*(18*n-11)*(18*n-13)*(18*n-17)/(n*(2*n-1)*(3*n-1)*(3*n-2)*(4*n-1)*(4*n-3))*a(2*n-2);
a(2*n+1) = 18432*(81*n^2-1)*(81*n^2-4)*(81*n^2-16)/(n*(2*n+1)*(16*n^2-1)*(36*n^2-1))*a(2*n-1).
Asymptotics: a(n) ~ 1/(2*sqrt(3*Pi*n)) * 2916^n as n -> infinity.
O.g.f.: A(x) = hypergeom([1/18, 5/18, 7/18, 11/18, 13/18, 17/18], [1/4, 1/3, 1/2, 2/3, 3/4], (2^4)*(3^12)*x^2) + 512*x*hypergeom([5/9, 7/9, 8/9, 10/9, 11/9, 13/9], [3/4, 5/6, 7/6, 5/4, 3/2], (2^4)*(3^12)*x^2) is conjectured to be algebraic over Q(x).
Conjectural congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k.

A364172 a(n) = (6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!).

Original entry on oeis.org

1, 45, 6237, 1021020, 178719453, 32427545670, 6016814703900, 1133540594837892, 215925912619400925, 41477110789150966020, 8019784929635201045862, 1558875476359831844951100, 304331361887290342345862940, 59629409730107012112361325820
Offset: 0

Views

Author

Peter Bala, Jul 12 2023

Keywords

Comments

Fractional factorials are defined in terms of the gamma function; for example, (n/3)! := Gamma(n/3 + 1).
Given two sequences of numbers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. For a list of the 52 sporadic integral factorial ratio sequences see A295431.
It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be rational numbers.
A295437, defined by A295437(n) = (18*n)!*n! / ((9*n)!*(6*n)!*(4*n)!) is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 7). Here we are essentially considering the sequence {A295437(n/3) : n >= 0}. This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!)), n = 0..15);
  • Mathematica
    Table[Product[36*(6*k - 5)*(6*k - 1)/(k*(3*k + n)), {k, 1, n}], {n, 0, 20}] (*  Vaclav Kotesovec, Jul 13 2023 *)

Formula

a(n) ~ 2^(4*n/3 - 3/2) * 3^(4*n) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 13 2023
a(n) = 5832*(6*n - 1)*(6*n - 5)*(6*n - 7)*(6*n - 11)*(6*n - 13)*(6*n - 17)/(n*(n - 1)*(n - 2)*(2*n - 3)*(4*n - 3)*(4*n - 9))*a(n-3) for n >= 3 with a(0) = 1, a(1) = 45 and a(2) = 6237.
Showing 1-3 of 3 results.