cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033995 Number of bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 88, 303, 1119, 5479, 32303, 251135, 2527712, 33985853, 611846940, 14864650924, 488222721992, 21712049275198, 1308300679611469, 106897965189674291, 11852113048215107822, 1784730721403509209215, 365323537513403184463273
Offset: 0

Views

Author

Ronald C. Read

Keywords

Comments

All bipartite graphs are perfect. - Falk Hüffner, Nov 27 2015
EULER transform of A005142 [1, 1, 1, 3, 5, 17, ...] is [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

Examples

			For n=1: o; n=2: o o, o-o; n=3: o o o, o o-o, o-o-o; n=4: o o o o, o o o-o, o-o o-o, o o-o-o, o-o-o-o, K_{2,2}, K_{3,1}. - _Michael Somos_, May 13 2019
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

Row sums of A297877.
The labeled version is A047864.
Equals A076278(n) + 1.
Cf. A005142 (connected).

Programs

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Sep 05 2018

A117279 Triangle read by rows: T(n,k) is number of labeled bipartite graphs with n nodes and k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 3, 1, 10, 45, 110, 140, 60, 10, 1, 15, 105, 435, 1125, 1701, 1200, 480, 105, 10, 1, 21, 210, 1295, 5355, 14952, 26572, 26670, 17535, 7840, 2331, 420, 35, 1, 28, 378, 3220, 19075, 81228, 246414, 507424, 666015, 620900, 431368
Offset: 0

Views

Author

Vladeta Jovovic, Jun 23 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,  1;
  1,  3,  3;
  1,  6, 15,  16,   3;
  1, 10, 45, 110, 140, 60, 10;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

Crossrefs

Row sums give A047864,
Columns k=1..5 are A000217(n-1), A050534, A053526, A053527, A053528.
The unlabeled version is A297877.

Programs

  • Mathematica
    nn=10;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[Exp[Log[f[x,y]]/2],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Sep 05 2013 *)
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(sqrt(sum(k=0, n, exp(x*(1+y)^k + O(x*x^n))*x^k/k! ))))]}
    { my(A=T(6)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 10 2022

Formula

E.g.f.: sqrt(Sum_{n>=0} exp(x*(1+q)^n)*x^n/n!).
Showing 1-2 of 2 results.