cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050526 Primes of form 5*2^n+1.

Original entry on oeis.org

11, 41, 641, 40961, 163841, 167772161, 2748779069441, 180143985094819841, 188894659314785808547841, 193428131138340667952988161, 850705917302346158658436518579420528641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 1999

Keywords

Comments

All terms are odd since if n is even, then 5*2^n+1 is divisible by 3. - Michele Fabbrini, Jun 06 2021

Crossrefs

For the corresponding exponents n see A002254.

Programs

  • GAP
    Filtered(List([1..270], n->5*2^n + 1), IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 5*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n, k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n, 5), n=1..127); # Martin Renner, Mar 05 2018
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=5*2^k+1), print1(p, ", "))); } \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A083575(A002254(n)). - Michel Marcus, Mar 29 2018

A300407 Primes of the form 17*2^n + 1.

Original entry on oeis.org

137, 557057, 2281701377, 38280596832649217, 3032901347000164747248857685080177164813336577, 240291200809860268823328460101036918152537809975084178304538443375796289537, 4031417378886400659867047414062478199819447786118941877597755244819503521544011777
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A002259.

Examples

			From _Muniru A Asiru_, Mar 29 2018: (Start)
137 is a member because 17 * 2^3 + 1 = 137 which is a prime.
557057 is a member because 17 * 2^15 + 1 = 557057 which is a prime.
2281701377 is a member because 17 * 2^27 + 1 = 2281701377 which is a prime.
... (End)
		

Crossrefs

Programs

  • GAP
    Filtered(List([1..270],n->17*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 17*2^n + 1]; // Vincenzo Librandi, Mar 07 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,17), n=1..267);
  • Mathematica
    Select[Table[17 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 07 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=17*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 28 2018

A300406 Primes of the form 13*2^n + 1.

Original entry on oeis.org

53, 3329, 13313, 13631489, 3489660929, 62864142619960717084721153, 5100145160001678120616578906356228963083163798627028041729, 6779255729241169695101387251026410519979286814120235842117075415451380965612384558178346467329, 1735489466685739441945955136262761093114697424414780375581971306355553527196770446893656695635969
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A032356.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->13*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 13*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,13), n=1..316);
  • Mathematica
    Select[Table[13 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 06 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=13*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A168596(A032356(n)). - Michel Marcus, Mar 29 2018
Showing 1-3 of 3 results.