cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002254 Numbers k such that 5*2^k + 1 is prime.

Original entry on oeis.org

1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 4687, 5947, 13165, 23473, 26607, 125413, 209787, 240937, 819739, 1282755, 1320487, 1777515
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A050526.

Programs

Extensions

Corrected (removed incorrect term 40937) and added more terms (from http://web.archive.org/web/20161028080239/http://www.prothsearch.net/riesel.html), Joerg Arndt, Apr 07 2013

A083575 a(0) = 6; for n>0, a(n) = 2*a(n-1) - 1.

Original entry on oeis.org

6, 11, 21, 41, 81, 161, 321, 641, 1281, 2561, 5121, 10241, 20481, 40961, 81921, 163841, 327681, 655361, 1310721, 2621441, 5242881, 10485761, 20971521, 41943041, 83886081, 167772161, 335544321, 671088641, 1342177281, 2684354561, 5368709121, 10737418241
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2003

Keywords

Comments

The primes in this sequence are listed in A050526. - M. F. Hasler, Oct 30 2010
An Engel expansion of 2/5 to the base 2 as defined in A181565, with the associated series expansion 2/5 = 2/6 + 2^2/(6*11) + 2^3/(6*11*21) + 2^4/(6*11*21*41) + ... . - Peter Bala, Oct 29 2013

Crossrefs

Programs

  • Magma
    [5*2^n+1 : n in [0..30]]; // Vincenzo Librandi, Nov 03 2011
    
  • Mathematica
    NestList[2#-1&,6,40] (* Harvey P. Dale, Jun 23 2017 *)
  • PARI
    a(n)=5<M. F. Hasler, Oct 30 2010
    
  • PARI
    Vec((6-7*x)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Sep 20 2016

Formula

a(n) = 5*2^n + 1. - M. F. Hasler, Oct 30 2010
a(n) = 3*a(n-1) - 2*a(n-2), n>1. - Vincenzo Librandi, Nov 03 2011
G.f.: (6-7*x) / ((1-x)*(1-2*x)). - Colin Barker, Sep 20 2016
E.g.f.: exp(x)*(1 + 5*exp(x)). - Stefano Spezia, Oct 08 2022
Product_{n>=0} (1 + 1/a(n)) = 7/5. - Amiram Eldar, Aug 04 2024

A226366 Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

7, 25, 39, 75, 127, 1947, 3313, 23473, 125413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2013

Keywords

Comments

No other terms below 5330000.
The reason all terms are odd is that if k is even, then 5*2^k + 1 == (-1)*(-1)^k + 1 = (-1)*1 + 1 = 0 (mod 3). So if k is even, then 3 divides 5*2^k + 1, and since 3 divides no other Fermat number than F_0=3 itself, we do not have a Fermat factor. - Jeppe Stig Nielsen, Jul 21 2019

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 3313, 2}]; lst
  • PARI
    isok(n) = my(p = 5*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

A334092 Primes p of the form of the form q*2^h + 1, where q is one of the Fermat primes; Primes p for which A329697(p) == 2.

Original entry on oeis.org

7, 11, 13, 41, 97, 137, 193, 641, 769, 12289, 40961, 163841, 557057, 786433, 167772161, 2281701377, 3221225473, 206158430209, 2748779069441, 6597069766657, 38280596832649217, 180143985094819841, 221360928884514619393, 188894659314785808547841, 193428131138340667952988161
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Primes p such that p-1 is not a power of two, but for which A171462(p-1) = (p-1-A052126(p-1)) is [a power of 2].
Primes of the form ((2^(2^k))+1)*2^h + 1, where ((2^(2^k))+1) is one of the Fermat primes, A019434, 3, 5, 17, 257, ..., .

Crossrefs

Primes in A334102.
Intersection of A081091 and A147545.
Subsequences: A039687, A050526, A300407.

Programs

  • PARI
    isA334092(n) = (isprime(n)&&2==A329697(n));
    
  • PARI
    A052126(n) = if(1==n,n,n/vecmax(factor(n)[, 1]));
    A209229(n) = (n && !bitand(n,n-1));
    isA334092(n) = (isprime(n)&&(!A209229(n-1))&&A209229(n-1-A052126(n-1)));
    
  • PARI
    list(lim)=if(exponent(lim\=1)>=2^33, error("Verify composite character of more Fermat primes before checking this high")); my(v=List(),t); for(e=0,4, t=2^2^e+1; while((t<<=1)Charles R Greathouse IV, Apr 14 2020

Extensions

More terms from Giovanni Resta, Apr 14 2020

A147545 Primes of the form p*2^k+1 with k>0 and p=1 or p in this sequence.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 83, 89, 97, 107, 113, 137, 167, 179, 193, 227, 233, 257, 353, 359, 389, 449, 467, 641, 719, 769, 773, 857, 929, 1097, 1283, 1409, 1433, 1439, 1553, 1697, 1889, 2657, 2819, 2879, 3089, 3329, 3593, 3617, 3779, 5639
Offset: 1

Views

Author

T. D. Noe, Nov 07 2008

Keywords

Comments

This sequence starts like A074781 but grows much faster. Observe that there can be large differences between consecutive terms. Can it be shown that there is always such a prime between consecutive powers of 2? Or that this sequence is infinite? By theorem 1 of the Noe paper, this sequence is a subsequence of A135832, primes in Section I of the phi iteration.
From Antti Karttunen, Apr 19 2020: (Start)
Sequence can be considered as a generalization of Fermat primes, A019434, which is a subsequence of this sequence.
All terms with binary weight k (A000120, at least 2 for these terms) can be found as a subset of primes found on the row k-1 of array A334100. E.g. primes with weight 2 are Fermat primes (A019434), those with weight 3 are A334092 (which doesn't contain any other primes), those with weight 4 are in A334093 (among also other kind of primes), those with weights 5, 6, 7 are included as (proper) subsets in A334094, A334095 and A334096 respectively. (End)

Crossrefs

Subsequence of A074781, and of A135832.
Subsequences: A019434, A334092 (including A039687, A050526, A300407).

Programs

  • Mathematica
    nn=2^13; t={1}; i=1; While[q=t[[i]]; k=1; While[p=1+q*2^k; p
    				
  • PARI
    A000265(n) = (n>>valuation(n,2));
    isA147454(n) = ((n>2)&&isprime(n)&&((1==(n=A000265(n-1)))||isA147454(n))); \\ Antti Karttunen, Apr 19 2020

Formula

A329697(a(n)) = A000120(a(n)) - 1. - Antti Karttunen, Apr 19 2020

A300407 Primes of the form 17*2^n + 1.

Original entry on oeis.org

137, 557057, 2281701377, 38280596832649217, 3032901347000164747248857685080177164813336577, 240291200809860268823328460101036918152537809975084178304538443375796289537, 4031417378886400659867047414062478199819447786118941877597755244819503521544011777
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A002259.

Examples

			From _Muniru A Asiru_, Mar 29 2018: (Start)
137 is a member because 17 * 2^3 + 1 = 137 which is a prime.
557057 is a member because 17 * 2^15 + 1 = 557057 which is a prime.
2281701377 is a member because 17 * 2^27 + 1 = 2281701377 which is a prime.
... (End)
		

Crossrefs

Programs

  • GAP
    Filtered(List([1..270],n->17*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 17*2^n + 1]; // Vincenzo Librandi, Mar 07 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,17), n=1..267);
  • Mathematica
    Select[Table[17 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 07 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=17*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 28 2018

A300406 Primes of the form 13*2^n + 1.

Original entry on oeis.org

53, 3329, 13313, 13631489, 3489660929, 62864142619960717084721153, 5100145160001678120616578906356228963083163798627028041729, 6779255729241169695101387251026410519979286814120235842117075415451380965612384558178346467329, 1735489466685739441945955136262761093114697424414780375581971306355553527196770446893656695635969
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

For the corresponding exponents n see A032356.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->13*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 13*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,13), n=1..316);
  • Mathematica
    Select[Table[13 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 06 2018 *)
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=13*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A168596(A032356(n)). - Michel Marcus, Mar 29 2018

A300408 Primes of the form 19*2^n + 1.

Original entry on oeis.org

1217, 19457, 1337006139375617
Offset: 1

Views

Author

Martin Renner, Mar 05 2018

Keywords

Comments

Next term a(4) = 19*2^366 + 1 > 10^111.
For the corresponding exponents n see A032359.

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->19*2^n + 1),IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Maple
    a:=(n,k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n,19), n=1..366);
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=19*2^k+1), print1(p, ", ")));} \\ Altug Alkan, Mar 29 2018
Showing 1-8 of 8 results.