cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A002253 Numbers k such that 3*2^k + 1 is prime.

Original entry on oeis.org

1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353
Offset: 1

Views

Author

Keywords

Comments

From Zak Seidov, Mar 08 2009: (Start)
List is complete up to 3941000 according to the list of RB & WK.
So far there are only 4 primes: 2, 5, 41, 353. (End)

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 614.
  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A039687 for the actual primes.

Programs

  • PARI
    is(n)=isprime(3*2^n+1) \\ Charles R Greathouse IV, Feb 17 2017
    
  • PARI
    A2253=[1]; A002253(n)=for(k=#A2253, n-1, my(m=A2253[k]); until(ispseudoprime(3<M. F. Hasler, Mar 03 2023

Formula

a(n) = log_2((A039687(n)-1)/3) = floor(log_2(A039687(n)/3)). - M. F. Hasler, Mar 03 2023

Extensions

Corrected and extended according to the list of Ray Ballinger and Wilfrid Keller by Zak Seidov, Mar 08 2009
Edited by N. J. A. Sloane, Mar 13 2009
a(47) and a(48) from the Ballinger & Keller web page, Joerg Arndt, Apr 07 2013
a(49) from https://t5k.org/primes/page.php?id=116922, Fabrice Le Foulher, Mar 09 2014
Terms moved from Data to b-file (Links), and additional term appended to b-file, by Jeppe Stig Nielsen, Oct 30 2020

A226366 Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

7, 25, 39, 75, 127, 1947, 3313, 23473, 125413
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2013

Keywords

Comments

No other terms below 5330000.
The reason all terms are odd is that if k is even, then 5*2^k + 1 == (-1)*(-1)^k + 1 = (-1)*1 + 1 = 0 (mod 3). So if k is even, then 3 divides 5*2^k + 1, and since 3 divides no other Fermat number than F_0=3 itself, we do not have a Fermat factor. - Jeppe Stig Nielsen, Jul 21 2019

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 3313, 2}]; lst
  • PARI
    isok(n) = my(p = 5*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

A001770 Numbers k such that 5*2^k - 1 is prime.

Original entry on oeis.org

2, 4, 8, 10, 12, 14, 18, 32, 48, 54, 72, 148, 184, 248, 270, 274, 420, 1340, 1438, 1522, 1638, 1754, 1884, 2014, 2170, 2548, 2622, 2652, 2704, 13510, 21738, 25624, 41934, 51478, 52540, 53230, 172300, 245728, 350028, 1194164
Offset: 1

Views

Author

Keywords

Comments

A084213(a(n)+1) is in A136539, for all n. - Farideh Firoozbakht and M. F. Hasler, Nov 03 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002254 (5*2^n+1 is prime), A050522 (primes of the form 5*2^n - 1).

Programs

Extensions

More terms from Hugo Pfoertner, Jun 23 2004
a(40) from the Wilfrid Keller link by Robert Price, Dec 22 2018

A268661 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 3^(2^m) + 1 for some m.

Original entry on oeis.org

3, 55, 127, 13165, 240937, 819739, 1282755
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268662 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 5^(2^m) + 1 for some m.

Original entry on oeis.org

7, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 13165, 23473, 125413, 1282755, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268663 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 6^(2^m) + 1 for some m.

Original entry on oeis.org

127, 4687, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A268664 Numbers n such that 5*2^n + 1 is a prime factor of a generalized Fermat number 12^(2^m) + 1 for some m.

Original entry on oeis.org

13, 15, 127, 5947, 26607, 1320487
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A050526 Primes of form 5*2^n+1.

Original entry on oeis.org

11, 41, 641, 40961, 163841, 167772161, 2748779069441, 180143985094819841, 188894659314785808547841, 193428131138340667952988161, 850705917302346158658436518579420528641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 1999

Keywords

Comments

All terms are odd since if n is even, then 5*2^n+1 is divisible by 3. - Michele Fabbrini, Jun 06 2021

Crossrefs

For the corresponding exponents n see A002254.

Programs

  • GAP
    Filtered(List([1..270], n->5*2^n + 1), IsPrime); # Muniru A Asiru, Mar 06 2018
    
  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 5*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
    
  • Maple
    a:=(n, k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
    seq(a(n, 5), n=1..127); # Martin Renner, Mar 05 2018
  • PARI
    lista(nn) = {for(k=1, nn, if(ispseudoprime(p=5*2^k+1), print1(p, ", "))); } \\ Altug Alkan, Mar 29 2018

Formula

a(n) = A083575(A002254(n)). - Michel Marcus, Mar 29 2018

A112245 Numbers k such that 65537*2^k+1 is prime.

Original entry on oeis.org

287, 1695, 81359, 512895
Offset: 1

Views

Author

T. D. Noe, Aug 30 2005, Aug 26 2007

Keywords

Comments

Note that 65537=2^16+1 is the largest known Fermat prime. These n yield provable primes. The primes are the smallest numbers in classes 303, 1711 and 81375 of the phi iteration (see A007755).
Jacques Molne found 512895. The corresponding provable prime is the smallest number in class 512911 of the Phi iteration.

Crossrefs

Cf. A002253, A002254, A002259, A053345 (F*2^n+1 is prime, where F is a Fermat prime).

Programs

A282945 Numbers k such that 5*2^k + 1 is a prime factor of a generalized Fermat number 7^(2^m) + 1 for some m.

Original entry on oeis.org

15, 13165, 23473, 1777515
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[p = 5*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[7, p]], AppendTo[lst, n]], {n, 1, 13165, 2}]; lst
Showing 1-10 of 16 results. Next