A181565 a(n) = 3*2^n + 1.
4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, 3145729, 6291457, 12582913, 25165825, 50331649, 100663297, 201326593, 402653185, 805306369, 1610612737, 3221225473
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Solomon W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663.
- Solomon W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663. [Annotated scanned copy]
- Hunar Sherzad Taher and Saroj Kumar Dash, On sums of k-generalized Fibonacci and k-generalized Lucas numbers as first and second kinds of Thabit numbers, Notes Num. Theor. Disc. Math. (2025) Vol. 31, No. 3, 448-459. See p. 2.
- Wikipedia, Engel Expansion
- Index entries for linear recurrences with constant coefficients, signature (3,-2)
Crossrefs
Programs
-
Magma
[3*2^n + 1: n in [0..30]]; // Vincenzo Librandi, May 19 2011
-
Mathematica
3*2^Range[0,50]+1 (* Vladimir Joseph Stephan Orlovsky, Mar 24 2011 *) LinearRecurrence[{3,-2},{4,7},40] (* Harvey P. Dale, Sep 19 2024 *)
-
PARI
A181565(n)=3<
Formula
From Ilya Gutkovskiy, Jun 01 2016: (Start)
O.g.f.: (4 - 5*x)/((1 - x)*(1 - 2*x)).
E.g.f.: (1 + 3*exp(x))*exp(x).
a(n) = 3*a(n-1) - 2*a(n-2). (End)
a(n) = 2*a(n-1) - 1. - Miquel Cerda, Aug 16 2016
Comments