cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000051 a(n) = 2^n + 1.

Original entry on oeis.org

2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequence L(2,3).
Length of the continued fraction for Sum_{k=0..n} 1/3^(2^k). - Benoit Cloitre, Nov 12 2003
See also A004119 for a(n) = 2a(n-1)-1 with first term = 1. - Philippe Deléham, Feb 20 2004
From the second term on (n>=1), in base 2, these numbers present the pattern 1000...0001 (with n-1 zeros), which is the "opposite" of the binary 2^n-2: (0)111...1110 (cf. A000918). - Alexandre Wajnberg, May 31 2005
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)* charpoly(A,3). - Milan Janjic, Jan 27 2010
First differences of A006127. - Reinhard Zumkeller, Apr 14 2011
The odd prime numbers in this sequence form A019434, the Fermat primes. - David W. Wilson, Nov 16 2011
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... . - R. J. Mathar, Aug 10 2012
Is the mentioned Pisano period lengths (see above) the same as A007733? - Omar E. Pol, Aug 10 2012
Only positive integers that are not 1 mod (2k+1) for any k>1. - Jon Perry, Oct 16 2012
For n >= 1, a(n) is the total length of the segments of the Hilbert curve after n iterations. - Kival Ngaokrajang, Mar 30 2014
Frénicle de Bessy (1657) proved that a(3) = 9 is the only square in this sequence. - Charles R Greathouse IV, May 13 2014
a(n) is the number of distinct possible sums made with at most two elements in {1,...,a(n-1)} for n > 0. - Derek Orr, Dec 13 2014
For n > 0, given any set of a(n) lattice points in R^n, there exist 2 distinct members in this set whose midpoint is also a lattice point. - Melvin Peralta, Jan 28 2017
Also the number of independent vertex sets, irredundant sets, and vertex covers in the (n+1)-star graph. - Eric W. Weisstein, Aug 04 and Sep 21 2017
Also the number of maximum matchings in the 2(n-1)-crossed prism graph. - Eric W. Weisstein, Dec 31 2017
Conjecture: For any integer n >= 0, a(n) is the permanent of the (n+1) X (n+1) matrix with M(j, k) = -floor((j - k - 1)/(n + 1)). This conjecture is inspired by the conjecture of Zhi-Wei Sun in A036968. - Peter Luschny, Sep 07 2021

References

  • Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 244.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.

Crossrefs

Apart from the initial 1, identical to A094373.
See A008776 for definitions of Pisot sequences.
Column 2 of array A103438.
Cf. A007583 (a((n-1)/2)/3 for odd n).

Programs

  • Haskell
    a000051 = (+ 1) . a000079
    a000051_list = iterate ((subtract 1) . (* 2)) 2
    -- Reinhard Zumkeller, May 03 2012
    
  • Magma
    [2^n+1: n in [0..40]]; // G. C. Greubel, Jan 18 2025
  • Maple
    A000051:=-(-2+3*z)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
    a := n -> add(binomial(n,k)*bernoulli(n-k,1)*2^(k+1)/(k+1),k=0..n); # Peter Luschny, Apr 20 2009
  • Mathematica
    Table[2^n + 1, {n,0,40}]
    2^Range[0,40] + 1 (* Eric W. Weisstein, Jul 17 2017 *)
    LinearRecurrence[{3, -2}, {2, 3}, 40] (* Eric W. Weisstein, Sep 21 2017 *)
  • PARI
    a(n)=2^n+1
    
  • PARI
    first(n) = Vec((2 - 3*x)/((1 - x)*(1 - 2*x)) + O(x^n)) \\ Iain Fox, Dec 31 2017
    
  • Python
    def A000051(n): return (1<Chai Wah Wu, Dec 21 2022
    

Formula

a(n) = 2*a(n-1) - 1 = 3*a(n-1) - 2*a(n-2).
G.f.: (2-3*x)/((1-x)*(1-2*x)).
First differences of A052944. - Emeric Deutsch, Mar 04 2004
a(0) = 1, then a(n) = (Sum_{i=0..n-1} a(i)) - (n-2). - Gerald McGarvey, Jul 10 2004
Inverse binomial transform of A007689. Also, V sequence in Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A127904(n+1) for n>0. - Reinhard Zumkeller, Feb 05 2007
Equals binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = A000079(n)+1. - Omar E. Pol, May 18 2008
E.g.f.: exp(x) + exp(2*x). - Mohammad K. Azarian, Jan 02 2009
a(n) = A024036(n)/A000225(n). - Reinhard Zumkeller, Feb 14 2009
From Peter Luschny, Apr 20 2009: (Start)
A weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1)=1 (which amounts to the definition B_{n} = B_{n}(1)).
a(n) = Sum_{k=0..n} C(n,k)*B_{n-k}*2^(k+1)/(k+1). (See also A052584.) (End)
a(n) is the a(n-1)-th odd number for n >= 1. - Jaroslav Krizek, Apr 25 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n)*A000225(n) = A000225(2*n).
a(n) = A173786(n,0). (End)
If p[i]=Fibonacci(i-4) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n+2) = a(n) + a(n+1) + A000225(n). - Ivan N. Ianakiev, Jun 24 2012
a(A006521(n)) mod A006521(n) = 0. - Reinhard Zumkeller, Jul 17 2014
a(n) = 3*A007583((n-1)/2) for n odd. - Eric W. Weisstein, Jul 17 2017
Sum_{n>=0} 1/a(n) = A323482. - Amiram Eldar, Nov 11 2020

A181565 a(n) = 3*2^n + 1.

Original entry on oeis.org

4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, 3145729, 6291457, 12582913, 25165825, 50331649, 100663297, 201326593, 402653185, 805306369, 1610612737, 3221225473
Offset: 0

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

From Peter Bala, Oct 28 2013: (Start)
Let x and b be positive real numbers. We define an Engel expansion of x to the base b to be a (possibly infinite) nondecreasing sequence of positive integers [a(1), a(2), a(3), ...] such that we have the series representation x = b/a(1) + b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) + .... Depending on the values of x and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 we recover the ordinary Engel expansion of x.
This sequence gives an Engel expansion of 2/3 to the base 2, with the associated series expansion 2/3 = 2/4 + 2^2/(4*7) + 2^3/(4*7*13) + 2^4/(4*7*13*25) + ....
More generally, for n and m positive integers, the sequence [m + 1, n*m + 1, n^2*m + 1, ...] gives an Engel expansion of the rational number n/m to the base n. See the cross references for several examples. (End)
The only squares in this sequence are 4, 25, 49. - Antti Karttunen, Sep 24 2023

Crossrefs

Essentially a duplicate of A004119.
A002253 and A039687 give the primes in this sequence, and A181492 is the subsequence of twin primes.

Programs

Formula

a(n) = A004119(n+1) = A103204(n+1) for all n >= 0.
From Ilya Gutkovskiy, Jun 01 2016: (Start)
O.g.f.: (4 - 5*x)/((1 - x)*(1 - 2*x)).
E.g.f.: (1 + 3*exp(x))*exp(x).
a(n) = 3*a(n-1) - 2*a(n-2). (End)
a(n) = 2*a(n-1) - 1. - Miquel Cerda, Aug 16 2016
For n >= 0, A005940(a(n)) = A001248(1+n). - Antti Karttunen, Sep 24 2023

A062709 a(n) = 2^n + 3.

Original entry on oeis.org

4, 5, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307, 8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915, 1073741827, 2147483651, 4294967299, 8589934595, 17179869187
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2001

Keywords

Comments

Written in binary a(n) is 1000...00011 for n > 1.
For n >= 2, a(n) is the minimal k for which A000120(k(2^n-1)) is not multiple of n. - Vladimir Shevelev, Jun 05 2009

Examples

			a(3) = 2^3 + 3 = 8 + 3 = 11.
a(4) = 2^4 + 3 = 16 + 3 = 19.
		

Crossrefs

Primes in this sequence are A057733.

Programs

Formula

a(n) = 2a(n-1) - 3 = A052548(n) + 1 = A000051(n) + 2 = A000079(n) + 3 = A000225(n) + 4 = A030101(A004119(n)) for n > 1.
G.f.: (4 - 7*x)/((1 - 2*x)*(1 - x)).
a(n) = A173921(A000051(n+1)). - Reinhard Zumkeller, Mar 04 2010
E.g.f.: exp(x)*(3 + exp(x)). - Stefano Spezia, May 06 2023

A002253 Numbers k such that 3*2^k + 1 is prime.

Original entry on oeis.org

1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353
Offset: 1

Views

Author

Keywords

Comments

From Zak Seidov, Mar 08 2009: (Start)
List is complete up to 3941000 according to the list of RB & WK.
So far there are only 4 primes: 2, 5, 41, 353. (End)

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 614.
  • H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A039687 for the actual primes.

Programs

  • PARI
    is(n)=isprime(3*2^n+1) \\ Charles R Greathouse IV, Feb 17 2017
    
  • PARI
    A2253=[1]; A002253(n)=for(k=#A2253, n-1, my(m=A2253[k]); until(ispseudoprime(3<M. F. Hasler, Mar 03 2023

Formula

a(n) = log_2((A039687(n)-1)/3) = floor(log_2(A039687(n)/3)). - M. F. Hasler, Mar 03 2023

Extensions

Corrected and extended according to the list of Ray Ballinger and Wilfrid Keller by Zak Seidov, Mar 08 2009
Edited by N. J. A. Sloane, Mar 13 2009
a(47) and a(48) from the Ballinger & Keller web page, Joerg Arndt, Apr 07 2013
a(49) from https://t5k.org/primes/page.php?id=116922, Fabrice Le Foulher, Mar 09 2014
Terms moved from Data to b-file (Links), and additional term appended to b-file, by Jeppe Stig Nielsen, Oct 30 2020

A039687 Primes of the form 3*2^k + 1.

Original entry on oeis.org

7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657, 221360928884514619393, 2353913150770005286438421033702874906038383291674012942337
Offset: 1

Views

Author

Keywords

Comments

Primes of the form 6m+1 (A002476) of A074781. - Bernard Schott, Dec 14 2020

Crossrefs

For more terms see A002253. These are the primes in A004119 (or A181565).
Subsequence of A081091.

Programs

Formula

a(n) = 3*2^A002253(n) + 1. - M. F. Hasler, Mar 03 2023

A049775 a(n) is the sum of all integers from 2^(n-2)+1 to 2^(n-1).

Original entry on oeis.org

2, 7, 26, 100, 392, 1552, 6176, 24640, 98432, 393472, 1573376, 6292480, 25167872, 100667392, 402661376, 1610629120, 6442483712, 25769869312, 103079346176, 412317122560, 1649267965952, 6597070815232, 26388281163776
Offset: 2

Views

Author

Keywords

Comments

Name when submitted: Sum of even-indexed terms of n-th row of array T given by A049773 (from Clark Kimberling).
Also sum of integers of which the binary order [A029837] is n: a(n) = Sum_[x | ceiling(log_2(x)) = n ]. E.g., a(7) = 6176 = Apply[Plus, Table[w,{w,65,128}]].
This sequence may be obtained by filling a complete binary tree left-to-right, row by row with the integers onwards from 2 and then collecting the sums of the rows; e.g., 2, 3+4, 5+6+7+8, 9+10+11+12+13+14+15+16, etc. a(n) is then equal to the sum of row n-1. - Carl R. White, Aug 19 2003
If the offset is set to zero, the inverse binomial transform gives A007051 without its leading 1. - R. J. Mathar, Mar 26 2009

Examples

			a(2) = 2 = 2.
a(3) = 7 = 3 + 4.
a(4) =26 = 5 + 6 + 7 + 8.
..
		

Crossrefs

Cf. A049773 (sequence motivating the original definition).
Cf. A049775(n+2) = A007582(n+1) - A007582(n).

Programs

  • Mathematica
    LinearRecurrence[{6,-8},{2,7},30] (* Harvey P. Dale, Mar 04 2013 *)

Formula

a(n) = 2^(n-3)*(3*2^(n-2)+1). - Carl R. White, Aug 19 2003
From Philippe Deléham, Feb 20 2004: (Start)
a(n+1) = 4*a(n) - 2^(n-2); see also A007582.
a(n+1) = 2^(n-2)*A004119(n). (End)
From R. J. Mathar, Mar 26 2009: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: -x^2*(-2+5*x)/((4*x-1)*(2*x-1)). (End)

Extensions

More terms from Michael Somos
Name change by Olivier Gérard, Oct 24 2017

A056807 Numbers k such that 3*10^k + 1 is prime.

Original entry on oeis.org

1, 3, 7, 10, 28, 36, 67, 81, 147, 483, 643, 1020, 1900, 2620, 10453, 27720, 52824, 105589, 111988, 618853, 665829
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2000

Keywords

Examples

			k = 3 gives (3*10^3+1) = 3000+1 = 3001, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 3*10^k + 1], Print[ k ]], {k, 0, 20000}]
  • PARI
    is(k)=isprime(3*10^k+1) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = A101823(n) + 1.

Extensions

a(13)-a(14) from Julien Peter Benney (jpbenney(AT)ftml.net), Nov 23 2004
a(15) from Hugo Pfoertner, Jan 18 2005
a(16)-a(17) from Robert G. Wilson v, Jan 18 2005
a(18) from Roman Makarchuk, Dec 05 2008 confirmed as next term by Ray Chandler, Mar 02 2012
a(19) from Alexander Gramolin, Feb 24 2012 confirmed as next term by Ray Chandler, Mar 02 2012
a(20)-a(21) from Kamada data by Robert Price, Jan 26 2015

A181492 Primes of the form p=3*2^k+1 such that p-2 is also a prime.

Original entry on oeis.org

7, 13, 193, 786433
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequence A181490 lists the exponents k, sequences A181491 and A181493 the corresponding lesser twin prime and their average.
a(5) > 3 * 2^3000 + 1. - Max Z. Scialabba, Dec 24 2023

Crossrefs

Programs

  • Mathematica
    Select[3 2^Range[100]+1,And@@PrimeQ[{#,#-2}]&] (* Harvey P. Dale, Jun 19 2013 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

A181492 = A181491 + 2 = A181493 + 1 = 3*2^A181490 + 1 = intersection of A004119 or A103204 or A181495 with A006512 or A001097.

A204713 T(n,k) is the number of (n+1) X (k+1) 0..1 arrays with the permanents of all 2 X 2 subblocks equal and nonzero.

Original entry on oeis.org

7, 13, 13, 25, 33, 25, 49, 81, 81, 49, 97, 209, 257, 209, 97, 193, 529, 833, 833, 529, 193, 385, 1361, 2689, 3473, 2689, 1361, 385, 769, 3473, 8705, 14145, 14145, 8705, 3473, 769, 1537, 8913, 28161, 58449, 73345, 58449, 28161, 8913, 1537, 3073, 22801, 91137
Offset: 1

Views

Author

R. H. Hardin, Jan 18 2012

Keywords

Comments

This is A183688+1 (the +1 comes from the all-1 matrix). [Discovered by Sequence Machine] - Andrey Zabolotskiy, Oct 19 2021

Examples

			Table starts
    7   13    25     49       97       193        385         769         1537
   13   33    81    209      529      1361       3473        8913        22801
   25   81   257    833     2689      8705      28161       91137       294913
   49  209   833   3473    14145     58449     239425      986129      4047681
   97  529  2689  14145    73345    382849    1992321    10382977     54072961
  193 1361  8705  58449   382849   2542369   16748161   110871041    731709057
  385 3473 28161 239425  1992321  16748161  140090241  1174759297   9838208513
  769 8913 91137 986129 10382977 110871041 1174759297 12503757969 132720731393
Some solutions for n=4 k=3
  1  1  1  1    1  1  1  1    0  1  1  1    1  1  1  1    0  1  0  1
  0  1  0  1    0  1  0  1    1  0  1  0    0  1  0  1    1  1  1  0
  1  1  1  0    1  0  1  0    1  1  1  1    1  1  1  0    1  0  1  1
  0  1  0  1    1  1  0  1    0  1  0  1    1  0  1  1    0  1  1  0
  1  1  1  0    0  1  1  0    1  1  1  0    1  1  0  1    1  1  0  1
		

Crossrefs

Column 1 is A004119(n+1).
Cf. A183688.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3)
k=3: a(n) = 3*a(n-1) +2*a(n-2) -4*a(n-3)
k=4: a(n) = a(n-1) +13*a(n-2) +3*a(n-3) -16*a(n-4)
k=5: a(n) = 4*a(n-1) +15*a(n-2) -38*a(n-3) -52*a(n-4) +72*a(n-5)
k=6: (order 9 recurrence)
k=7: (order 10 recurrence)

A103204 a(1) = 2, a(2) = 4; a(n) = 2*a(n-1) - 1.

Original entry on oeis.org

2, 4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, 3145729, 6291457, 12582913, 25165825, 50331649, 100663297, 201326593, 402653185, 805306369, 1610612737, 3221225473
Offset: 1

Views

Author

Roger L. Bagula, Mar 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 2; a[2] = 4; a[n_] := a[n] = 2*a[n - 1] - 1; Table[a[n], {n, 1, 32}]
    Join[{2},NestList[2#-1&,4,40]] (* or *) LinearRecurrence[{3,-2},{2,4,7},40] (* Harvey P. Dale, Dec 04 2018 *)
  • PARI
    Vec(x*(2-2*x-x^2)/(1-3*x+2*x^2) + O(x^50)) \\ Michel Marcus, Jan 29 2016

Formula

a(n) = A003945(n-1) + 1.
a(n) = 3*2^(n-2) + 1 for n>1. - Ralf Stephan, May 18 2007
a(n) = A004119(n-1), n>1. - R. J. Mathar, Jun 11 2010
G.f.: x*(2-2*x-x^2)/(1-3*x+2*x^2). a(n) = 3*a(n-1)-2*a(n-2), n>3. - Colin Barker, Jan 29 2012
Showing 1-10 of 19 results. Next