cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A181565 a(n) = 3*2^n + 1.

Original entry on oeis.org

4, 7, 13, 25, 49, 97, 193, 385, 769, 1537, 3073, 6145, 12289, 24577, 49153, 98305, 196609, 393217, 786433, 1572865, 3145729, 6291457, 12582913, 25165825, 50331649, 100663297, 201326593, 402653185, 805306369, 1610612737, 3221225473
Offset: 0

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

From Peter Bala, Oct 28 2013: (Start)
Let x and b be positive real numbers. We define an Engel expansion of x to the base b to be a (possibly infinite) nondecreasing sequence of positive integers [a(1), a(2), a(3), ...] such that we have the series representation x = b/a(1) + b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) + .... Depending on the values of x and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 we recover the ordinary Engel expansion of x.
This sequence gives an Engel expansion of 2/3 to the base 2, with the associated series expansion 2/3 = 2/4 + 2^2/(4*7) + 2^3/(4*7*13) + 2^4/(4*7*13*25) + ....
More generally, for n and m positive integers, the sequence [m + 1, n*m + 1, n^2*m + 1, ...] gives an Engel expansion of the rational number n/m to the base n. See the cross references for several examples. (End)
The only squares in this sequence are 4, 25, 49. - Antti Karttunen, Sep 24 2023

Crossrefs

Essentially a duplicate of A004119.
A002253 and A039687 give the primes in this sequence, and A181492 is the subsequence of twin primes.

Programs

Formula

a(n) = A004119(n+1) = A103204(n+1) for all n >= 0.
From Ilya Gutkovskiy, Jun 01 2016: (Start)
O.g.f.: (4 - 5*x)/((1 - x)*(1 - 2*x)).
E.g.f.: (1 + 3*exp(x))*exp(x).
a(n) = 3*a(n-1) - 2*a(n-2). (End)
a(n) = 2*a(n-1) - 1. - Miquel Cerda, Aug 16 2016
For n >= 0, A005940(a(n)) = A001248(1+n). - Antti Karttunen, Sep 24 2023

A181490 Numbers k such that 3*2^k-1 and 3*2^k+1 are twin primes (A001097).

Original entry on oeis.org

1, 2, 6, 18
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequences A181491 and A181492 list the corresponding primes.
No more terms below three million. - Charles R Greathouse IV, Mar 14 2011
Intersection of A002235 and A002253. - Jeppe Stig Nielsen, Mar 05 2018

Crossrefs

Programs

  • GAP
    Filtered([1..300],k->IsPrime(3*2^k-1) and IsPrime(3*2^k+1)); # Muniru A Asiru, Mar 11 2018
  • Maple
    a:=k->`if`(isprime(3*2^k-1) and isprime(3*2^k+1),k,NULL); seq(a(k),k=1..1000); # Muniru A Asiru, Mar 11 2018
  • Mathematica
    fQ[n_] := PrimeQ[3*2^n - 1] && PrimeQ[3*2^n + 1]; k = 1; lst= {}; While[k < 15001, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ] (* Robert G. Wilson v, Nov 05 2010 *)
    Select[Range[20],AllTrue[3*2^#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 24 2014 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

Equals { k | A007283(k) in A014574 } = { k | A153893(k) in A001359 }.

Extensions

Pari program repaired by Charles R Greathouse IV, Mar 14 2011

A181491 Primes of the form p = 3*2^k - 1 such that p+2 is also prime.

Original entry on oeis.org

5, 11, 191, 786431
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequence A181490 lists the exponents k, sequences A181492 and A181493 the corresponding upper twin prime and their average.
a(5) > 3 * 2 ^ 3000 + 1. - Max Z. Scialabba, Dec 24 2023

Crossrefs

Programs

  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

A181491 = A007283 intersect A014574 = A181492 - 2 = A181493 - 1 = 3*2^A153890 - 1.

A181493 Numbers of the form 3*2^k which are the average of twin primes, i.e., a(n)-1 and a(n)+1 are both prime.

Original entry on oeis.org

6, 12, 192, 786432
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequence A181490 lists the exponents k, sequences A181491 and A181492 the corresponding twin primes.

Crossrefs

Programs

  • Mathematica
    Select[3 2^Range[500],PrimeQ[#-1]&&PrimeQ[#+1]&]  (* Harvey P. Dale, Jan 18 2011 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

A181493 = A014574 intersect A007283 = A181491 + 1 = A181492 - 1 = 3*2^A181490.
A181493 = A014574 intersect A007283 = A181491 + 1 = A181492.

A276136 Numbers m > 1 such that the largest odd divisors of m-1, m, and m+1 are prime.

Original entry on oeis.org

6, 11, 12, 13, 23, 47, 192, 193, 383, 786432
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 22 2016

Keywords

Comments

Conjecture: this sequence is finite.
Any further terms are greater than 10^11. - Charles R Greathouse IV, Aug 22 2016
From Robert Israel, Apr 27 2020: (Start)
Each term is either of the form 3*2^k with 3*2^k-1 and 3*2^k+1 prime, or 3*2^k-1 with 3*2^k-1 prime and 3*2^(k-1)-1 prime, or 3*2^k+1 with 3*2^k+1 prime and 3*2^(k-1)+1 prime.
Any further terms > 10^2000.
(End)

Examples

			6 is in this sequence because the largest odd divisor of 5 is 5, the largest odd divisor of 6 is 3 and the largest odd divisor of 7 is 7, and all three are prime.
		

Crossrefs

Supersequence of A181493. Subsequence of A038550.

Programs

  • Magma
    [n: n in [2..3000000] | NumberOfDivisors(2*(n-1))- NumberOfDivisors(n-1)eq 2 and NumberOfDivisors(2(n))-NumberOfDivisors(n) eq 2 and NumberOfDivisors(2*(n+1))- NumberOfDivisors(n+1) eq 2];
    
  • Maple
    Res:= 6:
    for k from 2  while length(3*2^k-1)<1000 do
      if (isprime(3*2^k-1) and isprime(3*2^(k-1)-1)) then Res:= Res, 3*2^k-1
        fi;
      if (isprime(3*2^k-1) and isprime(3*2^k+1)) then Res:= Res, 3*2^k;
        fi;
      if (isprime(3*2^k+1) and isprime(3*2^(k-1)+1)) then Res:= Res, 3*2^k+1;
        fi;
    od:
    Res; # Robert Israel, Apr 27 2020
  • Mathematica
    Select[Range[2, 10^6], Function[n, Times @@ Boole@ PrimeQ@ Map[First@ Reverse@ DeleteCases[Divisors@ #, d_ /; EvenQ@ d] &, n + Range[-1, 1]] == 1]] (* Michael De Vlieger, Aug 22 2016 *)
    SequencePosition[Table[If[PrimeQ[Max[Select[Divisors[n],OddQ]]],1,0],{n,800000}],{1,1,1}][[;;,1]]+1 (* Harvey P. Dale, Jun 27 2023 *)
  • PARI
    isA038550(n)=isprime(n>>valuation(n,2))
    is(n)=isA038550(n-1) && isA038550(n) && isA038550(n+1) \\ Charles R Greathouse IV, Aug 22 2016
    
  • PARI
    forprime(p=2,1e11, my(a=isA038550(p-1),b=isA038550(p+1)); if(a && isA038550(p-2), print1(p-1", ")); if(a && b, print1(p", ")); if(b && isA038550(p+2), print1(p+1", "))) \\ may print numbers several times, but won't skip numbers; Charles R Greathouse IV, Aug 22 2016

Formula

A038550(a(n-1)) + 1 = A038550(a(n)) = A038550(a(n+1)) - 1.
a(n) >> n log n. - Charles R Greathouse IV, Aug 22 2016

A092680 Numbers of the form 3*2^k with a single anti-divisor.

Original entry on oeis.org

3, 6, 96, 393216
Offset: 1

Views

Author

Lior Manor, Mar 03 2004

Keywords

Comments

See A066272 for definition of anti-divisor.
If it exists, a(5) > 3*2^(1000). See A092679. - J.W.L. (Jan) Eerland, Nov 13 2022

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import antidivisor_count
    def A092680_gen(): return filter(lambda n: antidivisor_count(n)==1,(3*2**k for k in count(0)))
    A092680_list = list(islice(A092680_gen(),4)) # Chai Wah Wu, Jan 04 2022

Formula

a(n) = 3*2^A092679(n).
a(n) = 3*2^(A181490(n)-1) = (A181491(n)+1)/2 = (A181492(n)-1)/2. - Max Alekseyev, Feb 14 2025

A181494 Twin primes (A001097) of the form 3*2^k +- 1.

Original entry on oeis.org

5, 7, 11, 13, 191, 193, 786431, 786433
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Crossrefs

Programs

  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

A181494(n) = A181493(ceiling(n/2)) + (-1)^n = A007283(A181490(ceiling(n/2))) + (-1)^n.
Showing 1-7 of 7 results.