cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A181490 Numbers k such that 3*2^k-1 and 3*2^k+1 are twin primes (A001097).

Original entry on oeis.org

1, 2, 6, 18
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequences A181491 and A181492 list the corresponding primes.
No more terms below three million. - Charles R Greathouse IV, Mar 14 2011
Intersection of A002235 and A002253. - Jeppe Stig Nielsen, Mar 05 2018

Crossrefs

Programs

  • GAP
    Filtered([1..300],k->IsPrime(3*2^k-1) and IsPrime(3*2^k+1)); # Muniru A Asiru, Mar 11 2018
  • Maple
    a:=k->`if`(isprime(3*2^k-1) and isprime(3*2^k+1),k,NULL); seq(a(k),k=1..1000); # Muniru A Asiru, Mar 11 2018
  • Mathematica
    fQ[n_] := PrimeQ[3*2^n - 1] && PrimeQ[3*2^n + 1]; k = 1; lst= {}; While[k < 15001, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ] (* Robert G. Wilson v, Nov 05 2010 *)
    Select[Range[20],AllTrue[3*2^#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 24 2014 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

Equals { k | A007283(k) in A014574 } = { k | A153893(k) in A001359 }.

Extensions

Pari program repaired by Charles R Greathouse IV, Mar 14 2011

A181492 Primes of the form p=3*2^k+1 such that p-2 is also a prime.

Original entry on oeis.org

7, 13, 193, 786433
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequence A181490 lists the exponents k, sequences A181491 and A181493 the corresponding lesser twin prime and their average.
a(5) > 3 * 2^3000 + 1. - Max Z. Scialabba, Dec 24 2023

Crossrefs

Programs

  • Mathematica
    Select[3 2^Range[100]+1,And@@PrimeQ[{#,#-2}]&] (* Harvey P. Dale, Jun 19 2013 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

A181492 = A181491 + 2 = A181493 + 1 = 3*2^A181490 + 1 = intersection of A004119 or A103204 or A181495 with A006512 or A001097.

A181493 Numbers of the form 3*2^k which are the average of twin primes, i.e., a(n)-1 and a(n)+1 are both prime.

Original entry on oeis.org

6, 12, 192, 786432
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequence A181490 lists the exponents k, sequences A181491 and A181492 the corresponding twin primes.

Crossrefs

Programs

  • Mathematica
    Select[3 2^Range[500],PrimeQ[#-1]&&PrimeQ[#+1]&]  (* Harvey P. Dale, Jan 18 2011 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

A181493 = A014574 intersect A007283 = A181491 + 1 = A181492 - 1 = 3*2^A181490.
A181493 = A014574 intersect A007283 = A181491 + 1 = A181492.

A276136 Numbers m > 1 such that the largest odd divisors of m-1, m, and m+1 are prime.

Original entry on oeis.org

6, 11, 12, 13, 23, 47, 192, 193, 383, 786432
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 22 2016

Keywords

Comments

Conjecture: this sequence is finite.
Any further terms are greater than 10^11. - Charles R Greathouse IV, Aug 22 2016
From Robert Israel, Apr 27 2020: (Start)
Each term is either of the form 3*2^k with 3*2^k-1 and 3*2^k+1 prime, or 3*2^k-1 with 3*2^k-1 prime and 3*2^(k-1)-1 prime, or 3*2^k+1 with 3*2^k+1 prime and 3*2^(k-1)+1 prime.
Any further terms > 10^2000.
(End)

Examples

			6 is in this sequence because the largest odd divisor of 5 is 5, the largest odd divisor of 6 is 3 and the largest odd divisor of 7 is 7, and all three are prime.
		

Crossrefs

Supersequence of A181493. Subsequence of A038550.

Programs

  • Magma
    [n: n in [2..3000000] | NumberOfDivisors(2*(n-1))- NumberOfDivisors(n-1)eq 2 and NumberOfDivisors(2(n))-NumberOfDivisors(n) eq 2 and NumberOfDivisors(2*(n+1))- NumberOfDivisors(n+1) eq 2];
    
  • Maple
    Res:= 6:
    for k from 2  while length(3*2^k-1)<1000 do
      if (isprime(3*2^k-1) and isprime(3*2^(k-1)-1)) then Res:= Res, 3*2^k-1
        fi;
      if (isprime(3*2^k-1) and isprime(3*2^k+1)) then Res:= Res, 3*2^k;
        fi;
      if (isprime(3*2^k+1) and isprime(3*2^(k-1)+1)) then Res:= Res, 3*2^k+1;
        fi;
    od:
    Res; # Robert Israel, Apr 27 2020
  • Mathematica
    Select[Range[2, 10^6], Function[n, Times @@ Boole@ PrimeQ@ Map[First@ Reverse@ DeleteCases[Divisors@ #, d_ /; EvenQ@ d] &, n + Range[-1, 1]] == 1]] (* Michael De Vlieger, Aug 22 2016 *)
    SequencePosition[Table[If[PrimeQ[Max[Select[Divisors[n],OddQ]]],1,0],{n,800000}],{1,1,1}][[;;,1]]+1 (* Harvey P. Dale, Jun 27 2023 *)
  • PARI
    isA038550(n)=isprime(n>>valuation(n,2))
    is(n)=isA038550(n-1) && isA038550(n) && isA038550(n+1) \\ Charles R Greathouse IV, Aug 22 2016
    
  • PARI
    forprime(p=2,1e11, my(a=isA038550(p-1),b=isA038550(p+1)); if(a && isA038550(p-2), print1(p-1", ")); if(a && b, print1(p", ")); if(b && isA038550(p+2), print1(p+1", "))) \\ may print numbers several times, but won't skip numbers; Charles R Greathouse IV, Aug 22 2016

Formula

A038550(a(n-1)) + 1 = A038550(a(n)) = A038550(a(n+1)) - 1.
a(n) >> n log n. - Charles R Greathouse IV, Aug 22 2016

A092680 Numbers of the form 3*2^k with a single anti-divisor.

Original entry on oeis.org

3, 6, 96, 393216
Offset: 1

Views

Author

Lior Manor, Mar 03 2004

Keywords

Comments

See A066272 for definition of anti-divisor.
If it exists, a(5) > 3*2^(1000). See A092679. - J.W.L. (Jan) Eerland, Nov 13 2022

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import antidivisor_count
    def A092680_gen(): return filter(lambda n: antidivisor_count(n)==1,(3*2**k for k in count(0)))
    A092680_list = list(islice(A092680_gen(),4)) # Chai Wah Wu, Jan 04 2022

Formula

a(n) = 3*2^A092679(n).
a(n) = 3*2^(A181490(n)-1) = (A181491(n)+1)/2 = (A181492(n)-1)/2. - Max Alekseyev, Feb 14 2025

A181494 Twin primes (A001097) of the form 3*2^k +- 1.

Original entry on oeis.org

5, 7, 11, 13, 191, 193, 786431, 786433
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Crossrefs

Programs

  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

A181494(n) = A181493(ceiling(n/2)) + (-1)^n = A007283(A181490(ceiling(n/2))) + (-1)^n.
Showing 1-6 of 6 results.