A300707 Decimal expansion of Pi^4/96.
1, 0, 1, 4, 6, 7, 8, 0, 3, 1, 6, 0, 4, 1, 9, 2, 0, 5, 4, 5, 4, 6, 2, 5, 3, 4, 6, 5, 5, 0, 7, 3, 4, 4, 9, 0, 8, 8, 5, 1, 3, 2, 9, 0, 1, 7, 4, 2, 3, 8, 0, 6, 4, 7, 5, 9, 5, 2, 7, 9, 0, 2, 0, 1, 9, 7, 8, 8, 6, 3, 0, 7, 7, 6, 7, 5, 2, 8, 3, 2, 9, 3, 6, 4, 7, 1, 0, 2, 7, 8, 3, 6, 9, 5, 3, 4, 3, 6, 7, 2, 4, 0, 5
Offset: 1
Examples
1.0146780316041920545462534655073449088513290174238064...
Links
- Eric Weisstein's World of Mathematics, Dirichlet Lambda Function. See (6).
- Index entries for transcendental numbers
Programs
-
MATLAB
format long; pi^4/96
-
Maple
evalf((1/96)*Pi^4, 120)
-
Mathematica
RealDigits[Pi^4/96, 10, 120][[1]]
-
PARI
default(realprecision, 120); Pi^4/96
Formula
Equals A092425/96. - Omar E. Pol, Mar 11 2018
Equals (15/16)*zeta(4) = (15/16)*A013662. - Wolfdieter Lang, Sep 02 2019
Equals Sum_{k>=1} 1/(2*k-1)^4. - Sean A. Irvine, Mar 25 2025
Equals lambda(4), where lambda is the Dirichlet lambda function. - Michel Marcus, Aug 15 2025
Comments