cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302488 Total domination number of the n X n grid graph.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 72, 81, 90, 99, 110, 121, 132, 143, 156, 169, 182, 195, 210, 225, 240, 255, 272, 289, 306, 323, 342, 361, 380, 399, 420, 441, 462, 483, 506, 529, 552, 575, 600, 625, 650, 675, 702, 729, 756, 783, 812, 841, 870, 899, 930
Offset: 0

Views

Author

Eric W. Weisstein, Apr 08 2018

Keywords

Comments

Extended to a(0) and a(1) using the formula/recurrence. The total domination number of the 1 X 1 grid graph is undefined.

Crossrefs

Main diagonal of A300358.
The four quadrasections are A002943, A016754, A002939(n+1), A000466(n+1).
Bisections are A002378 and A085046.
Cf. A303142.

Programs

  • Magma
    R:=RealField(); [Round(((-1)^n + 2*n*(n + 2) + 4*Sin(n*Pi(R)/2) - 1)/8): n in [0..30]]; // G. C. Greubel, Apr 09 2018
  • Mathematica
    Table[(-1 + (-1)^n + 2 n (2 + n) + 4 Sin[n Pi/2])/8, {n, 0, 20}]
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 1, 2, 3, 6, 9}, 20]
    CoefficientList[Series[x (-1 - 2 x^3 + x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x]
  • PARI
    for(n=0,30, print1(round(((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8), ", ")) \\ G. C. Greubel, Apr 09 2018
    
  • PARI
    a(n)=my(m=n\4); (2*m+1)*(2*m + n%4) \\ Andrew Howroyd, Aug 17 2025
    

Formula

a(n) = ((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8.
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).
G.f.: x*(1 + 2*x^3 - x^4)/((1 - x)^3*(1 + x + x^2 + x^3)).
a(4*m + r) = (2*m + 1)*(2*m + r) for 0 <= r < 4. - Charles Kusniec, Aug 16 2025
From Amiram Eldar, Aug 26 2025: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 + 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/8 - 1/2. (End)

Extensions

a(0)=0 prepended and offset corrected by Andrew Howroyd, Aug 17 2025