A302488 Total domination number of the n X n grid graph.
0, 1, 2, 3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 72, 81, 90, 99, 110, 121, 132, 143, 156, 169, 182, 195, 210, 225, 240, 255, 272, 289, 306, 323, 342, 361, 380, 399, 420, 441, 462, 483, 506, 529, 552, 575, 600, 625, 650, 675, 702, 729, 756, 783, 812, 841, 870, 899, 930
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Total Domination Number.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Crossrefs
Programs
-
Magma
R:=RealField(); [Round(((-1)^n + 2*n*(n + 2) + 4*Sin(n*Pi(R)/2) - 1)/8): n in [0..30]]; // G. C. Greubel, Apr 09 2018
-
Mathematica
Table[(-1 + (-1)^n + 2 n (2 + n) + 4 Sin[n Pi/2])/8, {n, 0, 20}] LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 1, 2, 3, 6, 9}, 20] CoefficientList[Series[x (-1 - 2 x^3 + x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x]
-
PARI
for(n=0,30, print1(round(((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8), ", ")) \\ G. C. Greubel, Apr 09 2018
-
PARI
a(n)=my(m=n\4); (2*m+1)*(2*m + n%4) \\ Andrew Howroyd, Aug 17 2025
Formula
a(n) = ((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8.
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).
G.f.: x*(1 + 2*x^3 - x^4)/((1 - x)^3*(1 + x + x^2 + x^3)).
a(4*m + r) = (2*m + 1)*(2*m + r) for 0 <= r < 4. - Charles Kusniec, Aug 16 2025
From Amiram Eldar, Aug 26 2025: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 + 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/8 - 1/2. (End)
Extensions
a(0)=0 prepended and offset corrected by Andrew Howroyd, Aug 17 2025
Comments