cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302761 Number of total dominating sets in the n-barbell graph.

Original entry on oeis.org

1, 4, 23, 136, 707, 3312, 14527, 61264, 252515, 1027192, 4147343, 16674984, 66887875, 267960544, 1072726271, 4292804896, 17175281987, 68709777768, 274857460111, 1099468636600, 4397956334051, 17591997301264, 70368349913663, 281474154627696, 1125898195567267
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2018

Keywords

Crossrefs

Programs

  • Magma
    [(2^n-n)^2 - (2^n-2*n): n in [1..30]]; // Vincenzo Librandi, Apr 15 2018
  • Mathematica
    Array[(2^# - #)^2 - (2^# - 2 #) &, 30] (* Michael De Vlieger, Apr 14 2018 *)
    Table[(2^n - n)^2 - (2^n - 2*n), {n, 30}]
    LinearRecurrence[{11, -47, 101, -116, 68, -16}, {1, 4, 23, 136, 707, 3312}, 30]
    CoefficientList[Series[(1 - 7 x + 26 x^2 - 30 x^3 + 4 x^4)/((-1 + x)^3 (-1 + 2 x)^2 (-1 + 4 x)), {x, 0, 30}], x] (* Eric W. Weisstein, Apr 16 2018 *)
  • PARI
    a(n)={(2^n-n)^2 - (2^n-2*n)} \\ Andrew Howroyd, Apr 14 2018
    
  • PARI
    Vec(x*(1 - 7*x + 26*x^2 - 30*x^3 + 4*x^4) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Apr 15 2018
    

Formula

a(n) = (2^n-n)^2 - (2^n-2*n). - Andrew Howroyd, Apr 14 2018
From Colin Barker, Apr 15 2018: (Start)
G.f.: x*(1 - 7*x + 26*x^2 - 30*x^3 + 4*x^4) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)).
a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) - 16*a(n-6) for n>6. (End)
E.g.f.: exp(x)*(exp(3*x) + x*(3 + x) - exp(x)*(1 + 4*x)). - Stefano Spezia, Sep 06 2023

Extensions

a(1)-a(2) and a(11)-a(25) from Andrew Howroyd, Apr 14 2018