cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A304908 Expansion of x * (d/dx) 1/(1 - Sum_{k>=0} x^(2^k)).

Original entry on oeis.org

0, 1, 4, 9, 24, 50, 108, 217, 448, 882, 1740, 3366, 6504, 12428, 23660, 44745, 84352, 158270, 296064, 551950, 1026360, 1903524, 3522596, 6504998, 11990160, 22061700, 40528748, 74343096, 136183488, 249145148, 455265420, 830985473, 1515201792, 2760087990, 5023154832, 9133857670
Offset: 0

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Comments

Sum of all parts of all compositions (ordered partitions) of n into powers of 2.

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[x D[1/(1 - Sum[x^2^k, {k, 0, Floor[Log[nmax]/Log[2]] + 1}]), x], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Boole[k == 2^IntegerExponent[k, 2]] a[n - k], {k, 1, n}]; Table[n a[n], {n, 0, 35}]

Formula

a(n) = n*A023359(n).

A368299 a(n) is the number of permutations pi of [n] that avoid {231,321} so that pi^4 avoids 132.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 41, 72, 127, 223, 392, 688, 1208, 2120, 3721, 6530, 11460, 20111, 35293, 61935, 108689, 190736, 334719, 587391, 1030800, 1808928, 3174448, 5570768, 9776017, 17155714, 30106180, 52832663, 92714861, 162703239, 285524281, 501060184, 879299327
Offset: 0

Views

Author

Kassie Archer, Dec 20 2023

Keywords

Comments

Number of compositions of n of the form d_1+d_2+...+d_k=n where d_i is in {1,2,4} if i>1 and d_1 is any positive integer.

Crossrefs

Cf. A000071 (d_i in {1,2}), A077868 (d_i in {1,3}), A274110, A303666.
Partial sums of A181532.

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n<1, 0, 1+add(a(n-j), j=[1, 2, 4]))
        end:
    seq(a(n), n=0..37);  # Alois P. Heinz, Dec 20 2023
  • Mathematica
    LinearRecurrence[{2,0,-1,1,-1},{0,1,2,4,7},38] (* Stefano Spezia, Dec 21 2023 *)

Formula

G.f.: x/((1-x)*(1-x-x^2-x^4)).
a(n) = Sum_{m=0..n-1} Sum_{r=0..floor(m/4)} Sum_{j=0..floor((m-4*r)/2)} binomial(m-3*r-j,r)*binomial(m-4*r-j,j).
a(n) = 1+a(n-1)+a(n-2)+a(n-4) where a(0)=0, a(1)=1, a(2)=2, a(3)=4.
a(n) = A274110(n+1) - 1.
Showing 1-2 of 2 results.