A308077 G.f. A(x) satisfies: A(x) = x - A(x^2) + A(x^3) - A(x^4) + A(x^5) - A(x^6) + ...
1, -1, 1, 0, 1, -3, 1, 0, 2, -3, 1, 2, 1, -3, 3, 0, 1, -8, 1, 2, 3, -3, 1, 0, 2, -3, 4, 2, 1, -13, 1, 0, 3, -3, 3, 10, 1, -3, 3, 0, 1, -13, 1, 2, 8, -3, 1, 0, 2, -8, 3, 2, 1, -20, 3, 0, 3, -3, 1, 18, 1, -3, 8, 0, 3, -13, 1, 2, 3, -13, 1, -4, 1, -3, 8, 2, 3, -13, 1
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, add(a(n/d)* (-1)^(d-1), d=numtheory[divisors](n) minus {1})) end: seq(a(n), n=1..80); # Alois P. Heinz, Mar 30 2023
-
Mathematica
terms = 79; A[] = 0; Do[A[x] = x + Sum[(-1)^(k + 1) A[x^k], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]] a[n_] := If[n == 1, n, Sum[If[d < n, (-1)^(n/d + 1) a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 79}]
Formula
a(1) = 1; a(n) = Sum_{d|n, d
A348956 a(0) = 1; a(n) = Sum_{d|n, d < n} (-1)^(n/d + 1) * a(d - 1).
1, 0, -1, 1, -1, 1, 0, 1, -2, 0, 0, 1, 0, 1, -1, -1, -3, 1, 3, 1, 1, 0, -1, 1, -2, 0, -1, -2, -1, 1, 3, 1, -2, 0, 2, 0, 2, 1, -4, 0, -1, 1, 1, 1, 0, -4, 0, 1, -6, 1, 2, -3, 0, 1, 5, 0, 0, 3, 0, 1, 3, 1, -4, -1, -3, 0, 3, 1, 3, -1, -1, 1, 0, 1, -3, -4, -4, 1, 5, 1, -4
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..20000
- Ilya Gutkovskiy, Scatterplot of partial sums of A348956
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[If[d < n, (-1)^(n/d + 1) a[d - 1], 0], {d, Divisors[n]}]; Table[a[n], {n, 0, 80}] nmax = 80; A[] = 0; Do[A[x] = 1 - Sum[(-x)^k A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x]
-
PARI
A348956(n) = if(!n,1,sumdiv(n,d,if(d
A348956(d-1)*(-1)^(1 + (n/d)),0))); \\ Antti Karttunen, Nov 05 2021
Formula
G.f. A(x) satisfies: A(x) = 1 - x^2 * A(x^2) + x^3 * A(x^3) - x^4 * A(x^4) + ...
A307778 a(1) = 1; a(n+1) = Sum_{d|n} (-1)^(d+1)*a(d).
1, 1, 0, 1, -1, 0, 0, 1, -2, -1, 0, 1, -2, -1, 1, 1, -3, -2, 0, 1, -2, -1, 1, 2, -5, -5, 3, 2, -2, -1, 2, 3, -6, -5, 2, 2, -4, -3, 3, 2, -5, -4, 3, 4, -4, -5, 6, 7, -13, -12, 7, 5, -3, -2, 5, 5, -8, -7, 5, 6, -7, -6, 8, 5, -11, -13, 8, 9, -8, -6, 9, 10, -17, -16, 12, 8, -6
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := a[n] = Sum[(-1)^(d + 1) a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 77}] a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[(-1)^(k + 1) a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 77}]
Formula
G.f.: x * (1 + Sum_{n>=1} (-1)^(n+1)*a(n)*x^n/(1 - x^n)).
L.g.f.: log(Product_{n>=1} (1 - x^n)^((-1)^n*a(n)/n)) = Sum_{n>=1} a(n+1)*x^n/n.
A307779 a(1) = 1; a(n+1) = Sum_{d|n, n/d odd} a(d).
1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 11, 12, 13, 17, 17, 18, 22, 23, 25, 31, 32, 33, 38, 41, 42, 49, 51, 52, 63, 64, 64, 74, 75, 82, 93, 94, 95, 108, 113, 114, 130, 131, 133, 155, 156, 157, 174, 179, 187, 206, 208, 209, 231, 242, 247, 271, 272, 273, 307, 308, 309, 345, 345
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := a[n] = Sum[Boole[OddQ[(n - 1)/d]] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 65}] a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[a[k] x^k/(1 - x^(2 k)), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 65}]
Formula
G.f.: x * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^(2*n))).
L.g.f.: log(Product_{n>=1} ((1 + x^n)/(1 - x^n))^(a(n)/(2*n))) = Sum_{n>=1} a(n+1)*x^n/n.
A307777 a(1) = 1; a(n+1) = Sum_{d|n} (-1)^(n/d+d)*a(d).
1, 1, -2, -1, 1, 2, -2, -1, 0, -1, -2, -1, 6, 7, -7, -7, 5, 6, -8, -7, 6, 3, -3, -2, 5, 7, -15, -16, 26, 27, -22, -21, 12, 9, -16, -16, 28, 29, -23, -18, 9, 10, -23, -22, 28, 21, -20, -19, 25, 24, -31, -27, 29, 30, -23, -23, 16, 7, -35, -34, 79, 80, -60, -57, 27, 35, -50, -49, 54, 50, -41
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := a[n] = Sum[(-1)^((n - 1)/d + d) a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 71}] a[n_] := a[n] = SeriesCoefficient[x (1 - Sum[a[k] (-x)^k/(1 + x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 71}]
Formula
G.f.: x * (1 - Sum_{n>=1} a(n)*(-x)^n/(1 + x^n)).
L.g.f.: log(Product_{n>=1} (1 + x^n)^((-1)^(n+1)*a(n)/n)) = Sum_{n>=1} a(n+1)*x^n/n.
A351407 a(1) = 1; a(n+1) = Sum_{d|n} (-1)^(n/d) * a(d).
1, -1, 2, -3, 3, -4, 8, -9, 6, -9, 14, -15, 16, -17, 27, -33, 21, -22, 36, -37, 34, -45, 61, -62, 51, -55, 73, -82, 76, -77, 124, -125, 80, -97, 120, -132, 132, -133, 171, -190, 153, -154, 221, -222, 194, -233, 296, -297, 239, -248, 313, -337, 301, -302
Offset: 1
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, add((-1)^((n-1)/d)*a(d), d=numtheory[divisors](n-1))) end: seq(a(n), n=1..54); # Alois P. Heinz, Feb 10 2022
-
Mathematica
a[1] = 1; a[n_] := a[n] = Sum[(-1)^((n - 1)/d) a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 54}] nmax = 54; A[] = 0; Do[A[x] = x (1 + Sum[(-1)^k A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
Formula
G.f. A(x) satisfies: A(x) = x * ( 1 - A(x) + A(x^2) - A(x^3) + A(x^4) - A(x^5) + ... ).
G.f.: x * ( 1 - Sum_{n>=1} a(n) * x^n / (1 + x^n) ).