A348956 a(0) = 1; a(n) = Sum_{d|n, d < n} (-1)^(n/d + 1) * a(d - 1).
1, 0, -1, 1, -1, 1, 0, 1, -2, 0, 0, 1, 0, 1, -1, -1, -3, 1, 3, 1, 1, 0, -1, 1, -2, 0, -1, -2, -1, 1, 3, 1, -2, 0, 2, 0, 2, 1, -4, 0, -1, 1, 1, 1, 0, -4, 0, 1, -6, 1, 2, -3, 0, 1, 5, 0, 0, 3, 0, 1, 3, 1, -4, -1, -3, 0, 3, 1, 3, -1, -1, 1, 0, 1, -3, -4, -4, 1, 5, 1, -4
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..20000
- Ilya Gutkovskiy, Scatterplot of partial sums of A348956
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[If[d < n, (-1)^(n/d + 1) a[d - 1], 0], {d, Divisors[n]}]; Table[a[n], {n, 0, 80}] nmax = 80; A[] = 0; Do[A[x] = 1 - Sum[(-x)^k A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x]
-
PARI
A348956(n) = if(!n,1,sumdiv(n,d,if(d
A348956(d-1)*(-1)^(1 + (n/d)),0))); \\ Antti Karttunen, Nov 05 2021
Formula
G.f. A(x) satisfies: A(x) = 1 - x^2 * A(x^2) + x^3 * A(x^3) - x^4 * A(x^4) + ...
Comments