A025523 a(n) = 1 + Sum_{ k < n and k | n} a(k).
1, 2, 3, 5, 6, 9, 10, 14, 16, 19, 20, 28, 29, 32, 35, 43, 44, 52, 53, 61, 64, 67, 68, 88, 90, 93, 97, 105, 106, 119, 120, 136, 139, 142, 145, 171, 172, 175, 178, 198, 199, 212, 213, 221, 229, 232, 233, 281, 283, 291, 294, 302, 303, 323, 326, 346, 349, 352, 353, 397, 398, 401
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Herbert S. Wilf, The Redheffer matrix of a partially ordered set, The Electronic Journal of Combinatorics, Volume 11(2), 2004, R#10.
Crossrefs
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = DivisorSum[n, f[#] &, # < n &]; Accumulate[Array[f, 100]] (* Amiram Eldar, May 02 2025 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A025523(n): if n == 0: return 1 c, j = 2, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A025523(k1) j, k1 = j2, n//j2 return n+c-j # Chai Wah Wu, Mar 30 2021
Formula
Running sum of A002033.
a(n) = 1 + Sum_{k = 2 to n} a([n/k]). - Mitchell Lee (worthawholephan(AT)gmail.com), Jul 26 2010
G.f. A(x) satisfies: A(x) = (1/(1 - x)) * (x + Sum_{k>=2} (1 - x^k) * A(x^k)). - Ilya Gutkovskiy, Aug 11 2021
Comments