cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A088381 Numbers greater than the cube of their smallest prime factor.

Original entry on oeis.org

10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

a(n) > A020639(a(n))^3 = A088378(a(n)); complement of A088380;
a(n) > A088380(k) for n <= 28, a(n) < A088380(k) for n > 28.

Crossrefs

Cf. A020639, A138511 (subsequence).
Positions of numbers greater than 3 in A307908.

Programs

  • Haskell
    a088381 n = a088381_list !! (n-1)
    a088381_list = filter f [1..] where
                          f x = p ^ 2 < div x p  where p = a020639 x
    -- Reinhard Zumkeller, Jan 08 2015
    
  • Maple
    filter:= n -> n > min(numtheory:-factorset(n))^3:
    select(filter, [$2..200]); # Robert Israel, Aug 11 2020
  • PARI
    isok(n) = n > factor(n)[1,1]^3; \\ Michel Marcus, Jan 08 2015

A088382 Numbers not exceeding the 4th power of their smallest prime factor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

a(n) <= A020639(a(n))^4 = A088379(a(n)); complement of A088383;
a(n) < A088383(k) for n <= 67, a(n) > A088383(k) for n > 67.

Crossrefs

Positions of numbers less than 5 in A307908.

Programs

  • Haskell
    a088382 n = a088382_list !! (n-1)
    a088382_list = [x | x <- [1..], x <= a020639 x ^ 4]
    -- Reinhard Zumkeller, Feb 06 2015
  • Mathematica
    Select[Range[200],#<=FactorInteger[#][[1,1]]^4&] (* Harvey P. Dale, Jan 25 2015 *)

A088380 Numbers not exceeding the cube of their smallest prime factor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

a(n) <= A020639(a(n))^3 = A088378(a(n)); complement of A088381;
a(n) < A088381(k) for n <= 28, a(n) > A088381(k) for n > 28.

Crossrefs

Positions of numbers less than 4 in A307908.

Programs

  • Haskell
    a088380 n = a088382_list !! (n-1)
    a088380_list = [x | x <- [1..], x <= a020639 x ^ 3]
    -- Reinhard Zumkeller, Feb 06 2015
  • Mathematica
    Select[Range[200],#<=FactorInteger[#][[1,1]]^3&] (* Harvey P. Dale, Apr 28 2022 *)

A088383 Numbers greater than the 4th power of their smallest prime factor.

Original entry on oeis.org

18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116, 117, 118, 120, 122, 123, 124, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

a(n) > A020639(a(n))^4 = A088379(a(n)); complement of A088382.
a(n) > A088382(k) for n <= 67, a(n) < A088382(k) for n > 67.

Crossrefs

Positions of numbers greater than 4 in A307908.

Programs

  • Haskell
    a088383 n = a088383_list !! (n-1)
    a088383_list = [x | x <- [1..], x  a020639 x ^ 4]
    -- Reinhard Zumkeller, Feb 06 2015
  • Mathematica
    Select[Range[200],#>(FactorInteger[#][[1,1]])^4&] (* Harvey P. Dale, Aug 15 2015 *)

A307907 a(n) is the greatest k such that p^k <= n for any prime factor p of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 1, 1, 2, 1, 1, 1, 1
Offset: 2

Views

Author

Rémy Sigrist, May 05 2019

Keywords

Examples

			For n = 12:
- the prime factors of 12 are 2 and 3,
- 2^2 < 3^2 <= 12 < 3^3,
- hence a(12) = 2.
		

Crossrefs

Programs

  • Mathematica
    Array[If[PrimeQ@ #, 1, Floor@ Log[FactorInteger[#][[-1, 1]], #]] &, 105, 2] (* Michael De Vlieger, May 08 2019 *)
  • PARI
    a(n) = my (f=factor(n)); logint(n, f[#f~, 1])
    
  • Python
    from sympy import integer_log, primefactors
    def A307907(n): return integer_log(n,max(primefactors(n)))[0] # Chai Wah Wu, Oct 12 2024

Formula

a(n) = floor(log(n)/log(A006530(n))).
a(p^k) = k for any prime number p and any k > 0.
0 <= a(n^k) - k*a(n) < k for any n > 1 and any k > 0.
a(n) = 1 iff n belongs to A064052.
a(n) > 1 iff n belongs to A048098.
a(n) > 2 iff n belongs to A090081.
Showing 1-5 of 5 results.