cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A283533 a(n) = Sum_{d|n} d^(2*d + 1).

Original entry on oeis.org

1, 33, 2188, 262177, 48828126, 13060696236, 4747561509944, 2251799813947425, 1350851717672994277, 1000000000000048828158, 895430243255237372246532, 953962166440690142662256812, 1192533292512492016559195008118
Offset: 1

Views

Author

Seiichi Manyama, Mar 10 2017

Keywords

Comments

Inverse Mobius transform of A085526. - R. J. Mathar, Mar 11 2017

Examples

			a(6) = 1^(2+1) + 2^(4+1) + 3^(6+1) + 6^(12+1) = 13060696236.
		

Crossrefs

Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), this sequence (k=2), A283535 (k=3).
Cf. A308696.

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Total[d^(2 d + 1)]]; Array[f, 14] (* Robert G. Wilson v, Mar 10 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d^(2*d+1)); \\ Michel Marcus, Mar 11 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k))))) \\ Seiichi Manyama, Jun 18 2019

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 18 2019

A308698 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d).

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 17, 28, 3, 1, 65, 730, 261, 2, 1, 257, 19684, 65553, 3126, 4, 1, 1025, 531442, 16777281, 9765626, 46688, 2, 1, 4097, 14348908, 4294967553, 30517578126, 2176783082, 823544, 4, 1, 16385, 387420490, 1099511628801, 95367431640626, 101559956688164, 678223072850, 16777477, 3
Offset: 1

Views

Author

Seiichi Manyama, Jun 17 2019

Keywords

Examples

			Square array begins:
   1,    1,       1,           1,              1, ...
   2,    5,      17,          65,            257, ...
   2,   28,     730,       19684,         531442, ...
   3,  261,   65553,    16777281,     4294967553, ...
   2, 3126, 9765626, 30517578126, 95367431640626, ...
		

Crossrefs

Columns k=0..3 give A000005, A062796, A308696, A308697.
Row n=1..2 give A000012, A052539.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*#) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(k*j-1))).
G.f. of column k: Sum_{j>=1} j^(k*j) * x^j/(1 - x^j).

A308753 a(n) = Sum_{d|n} d^(2*(d-1)).

Original entry on oeis.org

1, 5, 82, 4101, 390626, 60466262, 13841287202, 4398046515205, 1853020188851923, 1000000000000390630, 672749994932560009202, 552061438912436478063702, 542800770374370512771595362, 629983141281877223617054459942
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2019

Keywords

Crossrefs

Column k=2 of A308701.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(2*(# - 1)) &]; Array[a, 14] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(2*(d-1)))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k-3)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*(k-1))*x^k/(1-x^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k-3))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(2*(k-1)) * x^k/(1 - x^k).

A308756 a(n) = Sum_{d|n} d^(2*(d-2)).

Original entry on oeis.org

1, 2, 10, 258, 15626, 1679627, 282475250, 68719476994, 22876792454971, 10000000000015627, 5559917313492231482, 3833759992447476802059, 3211838877954855105157370, 3214199700417740937033562867, 3787675244106352329254150406260
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(2*(# - 2)) &]; Array[a, 15] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(2*(d-2)))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k-5)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*(k-2))*x^k/(1-x^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k-5))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(2*(k-2)) * x^k/(1 - x^k).

A359732 a(n) = Sum_{d|n} d^(2*d-1).

Original entry on oeis.org

1, 9, 244, 16393, 1953126, 362797308, 96889010408, 35184372105225, 16677181699666813, 10000000000001953134, 7400249944258160101212, 6624737266949237373933820, 7056410014866816666030739694, 8819763977946281130541873428720
Offset: 1

Views

Author

Seiichi Manyama, Jan 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(2*# - 1) &]; Array[a, 15] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^(2*d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(2*k-1)*x^k/(1-x^k)))

Formula

G.f.: Sum_{k>0} k^(2*k-1) * x^k / (1 - x^k).
Showing 1-5 of 5 results.