A308900 An explicit example of an infinite sequence with a(1)=1 and, for n >= 2, a(n) and S(n) = Sum_{i=1..n} a(i) have no digit in common.
1, 6, 4, 66, 34, 666, 334, 6666, 3334, 66666, 33334, 666666, 333334, 6666666, 3333334, 66666666, 33333334, 666666666, 333333334, 6666666666, 3333333334, 66666666666, 33333333334, 666666666666, 333333333334, 6666666666666, 3333333333334, 66666666666666, 33333333333334
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..1999
- R. Israel, Re: Help with a(n) and a cumulative sum, Seqfan (Jul 15 2019).
- Index entries for linear recurrences with constant coefficients, signature (-1,10,10).
Programs
-
Magma
I:=[1,6,4]; [n le 3 select I[n] else - Self(n-1) + 10*Self(n-2) + 10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 20 2019
-
Maple
1, seq(op([6*(10^i-1)/9, 3*(10^i-1)/9+1]), i=1..30); # Robert Israel, Jul 15 2019
-
Mathematica
CoefficientList[Series[(1 + 7 x)/((1 + x) (1 - 10 x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Jul 18 2019 *) LinearRecurrence[{-1,10,10},{1,6,4},30] (* Harvey P. Dale, Jan 02 2022 *)
-
PARI
Vec((1+7*x)/((1+x)*(1-10*x^2)) + O(x^20)) \\ Felix Fröhlich, Jul 15 2019
-
PARI
a(n) = if(n==1, 1, if(n%2==0, 6*(10^(n/2)-1)/9, 3*(10^((n-1)/2)-1)/9+1)) \\ Felix Fröhlich, Jul 15 2019
Formula
For even n >= 2, a(n) = 6666...66 (with n/2 6's). For odd n >= 5, a(n) = 3333...334 (with (n-3)/2 3's and a single 4).
From Robert Israel, Jul 15 2019: (Start)
G.f. (1+7*x)/((1+x)*(1-10*x^2)).
a(n) = -a(n - 1) + 10*a(n - 2) + 10*a(n - 3). (End)
a(-n) = a(n+1). - Paul Curtz, Jul 18 2019
a(n) = (1/60)*(-40*(-1)^n + (1 + (-1)^n)*(2^(2+n/2)*5^(1+n/2)) + (1 + (-1)^(n+1))*10^((1+n)/2)). - Stefano Spezia, Jul 20 2019
Comments