A292861 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*(1 - exp(x))).
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 1, 0, 1, -4, 6, 2, 1, 0, 1, -5, 12, -3, -6, -2, 0, 1, -6, 20, -20, -21, -14, -9, 0, 1, -7, 30, -55, -20, 24, 26, -9, 0, 1, -8, 42, -114, 45, 172, 195, 178, 50, 0, 1, -9, 56, -203, 246, 370, 108, -111, 90, 267, 0, 1, -10, 72, -328, 679, 318, -1105, -2388, -3072, -2382, 413, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, -5, -6, ... 0, 0, 2, 6, 12, 20, 30, ... 0, 1, 2, -3, -20, -55, -114, ... 0, 1, -6, -21, -20, 45, 246, ... 0, -2, -14, 24, 172, 370, 318, ... 0, -9, 26, 195, 108, -1105, -4074, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, -(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
-
Mathematica
A[n_, k_] := Sum[(-k)^j StirlingS2[n, j], {j, 0, n}]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 10 2021 *) A292861[n_, k_] := BellB[k, k - n]; Table[A292861[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)
Formula
A(0,k) = 1 and A(n,k) = -k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.
A(n,k) = Sum_{j=0..n} (-k)^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019
A(n,k) = BellPolynomial(n, -k). - Peter Luschny, Dec 23 2021