A309779 Squares that can be expressed as the sum of two positive squares but not as the sum of three positive squares.
25, 100, 400, 1600, 6400, 25600, 102400, 409600, 1638400, 6553600, 26214400, 104857600, 419430400, 1677721600, 6710886400, 26843545600, 107374182400, 429496729600, 1717986918400, 6871947673600, 27487790694400, 109951162777600, 439804651110400, 1759218604441600
Offset: 1
Examples
25 = 5^2 = 3^2 + 4^2, 100 = 10^2 = 6^2 + 8^2, 5^2 * 4^(n-1) = (5 * 2^(n-1))^2 = (3 * 2^(n-1))^2 + (4 * 2^(n-1))^2, but these terms are not the sum of three positive squares.
Links
- H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Publications of the Small Systems Group Oldenburg, preprint, 1973.
- H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Journ. Reine Angewandte Mathematik, Vol. 268/269, 1974, 410-417.
- P. K. J. Draxl, Sommes de deux carrés qui ne sont pas sommes de trois carrés., Mémoires de la SMF, tome 37 (1974), p. 53-53.
- Index entries for linear recurrences with constant coefficients, signature (4).
Crossrefs
Programs
-
Mathematica
Array[25*4^(# - 1) &, 24] (* Michael De Vlieger, Aug 19 2019 *)
-
PARI
a(n) = 25 * 4^(n-1); \\ Jinyuan Wang, Aug 18 2019
Formula
a(n) = 5^2 * 4^(n-1) with n >= 1.
a(n) = 4*a(n-1) for n > 1. G.f.: 25*x/(1 - 4*x). - Chai Wah Wu, Aug 29 2019
a(n) = 25 * A000302(n-1). - Alois P. Heinz, Aug 29 2019
E.g.f.: 25*(exp(4*x) - 1)/4. - Stefano Spezia, Oct 28 2023
Comments