cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153894 a(n) = 5*2^n - 1.

Original entry on oeis.org

4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279, 2684354559
Offset: 0

Views

Author

Keywords

Comments

a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n + 1, where the string "{}" is used to represent the empty set and spaces are ignored. - Ely Golden, Nov 14 2019
a(n) converted to binary is 100 followed by n ones. - Alexandre Herrera, Oct 06 2023

Crossrefs

Programs

  • Magma
    [5*2^n-1: n in [0..30]]; // Vincenzo Librandi, Oct 28 2011
    
  • Mathematica
    a=4;lst={a};Do[a=a*2+1;AppendTo[lst,a],{n,5!}];lst
    LinearRecurrence[{3,-2},{4,9}, 25] (* or *) Table[5*2^n - 1, {n,0,25}] (* G. C. Greubel, Sep 01 2016 *)
  • PARI
    a(n)=5*2^n-1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 2*a(n-1) + 1, n>0.
a(n) = A052549(n+1).
G.f.: (4 - 3*x) / ( (2*x-1)*(x-1) ). - R. J. Mathar, Oct 22 2011
a(n) + a(n-1)^2 = A309779(n), a perfect square. - Vincenzo Librandi, Oct 28 2011
From G. C. Greubel, Sep 01 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
E.g.f.: 5*exp(2*x) - exp(x). (End)

Extensions

Edited by N. J. A. Sloane, Feb 07 2009
Definition corrected by Franklin T. Adams-Watters, Apr 22 2009

A309778 a(n) is the greatest integer such that, for every positive integer k <= a(n), n^2 can be written as the sum of k positive square integers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 155, 1, 211, 1, 275, 1, 1, 2, 1, 1, 1, 1, 611, 662, 1, 1, 827, 886, 1, 1, 1, 1142, 1211, 1, 1355, 1, 1507, 2, 1667, 1, 1, 1, 2011, 1, 1, 1, 1, 2486, 2587, 2690, 2795, 1, 3011, 1, 1, 3350, 1, 3586, 3707, 1, 1, 1
Offset: 1

Views

Author

Bernard Schott, Aug 17 2019

Keywords

Comments

The idea for this sequence comes from the 6th problem of the 2nd day of the 33rd International Mathematical Olympiad in Moscow, 1992 (see link).
There are four cases to examine and three possible values for a(n).
a(n) = 1 iff n is a nonhypotenuse number or iff n is in A004144.
a(n) >= 2 iff n is a hypotenuse number or iff n is in A009003.
a(n) = 2 iff n^2 is the sum of two positive squares but not the sum of three positive squares or iff n^2 is in A309779.
a(n) = n^2 - 14 iff n^2 is the sum of two and three positive squares or iff n^2 is in A231632.
Theorem: a square n^2 is the sum of k positive squares for all 1 <= k <= n^2 - 14 iff n^2 is the sum of 2 and 3 positive squares (proof in Kuczma). Consequently: A231632 = A018820.

Examples

			1 = 1^2, 4 = 2^2 and a(1) = a(2) = 1.
25 = 5^2 = 3^2 + 4^2 and a(5) = 2.
The first representations of 169 are 13^2 = 12^2 + 5^2 = 12^2 + 4^2 + 3^2 = 11^2 + 4^2 + 4^2 + 4^2 =  6^2 + 6^2 + 6^2 + 6^2 + 5^2  = 6^2 + 6^2 + 6^2 + 6^2 + 4^2 + 3^2 = ... and a(13) = 13^2 - 14 = 155.
		

References

  • Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 76-79.

Crossrefs

Showing 1-2 of 2 results.