A154747 Decimal expansion of sqrt(sqrt(2) - 1), the radius vector of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.
6, 4, 3, 5, 9, 4, 2, 5, 2, 9, 0, 5, 5, 8, 2, 6, 2, 4, 7, 3, 5, 4, 4, 3, 4, 3, 7, 4, 1, 8, 2, 0, 9, 8, 0, 8, 9, 2, 4, 2, 0, 2, 7, 4, 2, 4, 4, 4, 0, 0, 7, 6, 5, 1, 1, 5, 6, 1, 5, 2, 0, 0, 9, 3, 5, 2, 0, 7, 4, 8, 5, 0, 3, 2, 1, 8, 3, 6, 5, 1, 9, 5, 4, 5, 1, 3, 4, 2, 4, 6, 5, 9, 5
Offset: 0
Examples
0.643594252905582624735443437418...
References
- A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 2, pages 56 and 104-105 (1993).
- C. L. Siegel, Topics in Complex Function Theory, Volume I: Elliptic Functions and Uniformization Theory, Wiley-Interscience, 1969, page 5
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000.
- British Mathematical Olympiad 1993, Problem 2.
- Bernard Schott, Figure for B.M.O. 1993, Problem 2.
- Index entries for algebraic numbers, degree 4
- Index to sequences related to curves.
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Mathematica
nmax = 1000; First[ RealDigits[ Sqrt[Sqrt[2] - 1], 10, nmax] ]
-
PARI
sqrt(sqrt(2) - 1) \\ Michel Marcus, Dec 10 2016
Formula
From Peter Bala, Jul 01 2024: (Start)
This constant occurs in the evaluation of Integral_{x = 0..Pi/2} sin^2(x)/(1 + sin^4(x)) dx = Pi/4 * sqrt(sqrt(2) - 1).
Equals (1/2)*Sum_{n >= 0} (-1/16)^n * binomial(4*n+2, 2*n+1) (a slowly converging series). (End)
Equals 2^(3/4)*sin(Pi/8). - Vaclav Kotesovec, Jul 01 2024
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
Comments