cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A335236 Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime.

Original entry on oeis.org

0, 10, 21, 22, 26, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153, 154, 156, 160, 162, 163, 164
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

These are compositions whose product is strictly greater than the LCM of their parts.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()            74: (3,2,2)        109: (1,2,1,2,1)
   10: (2,2)         76: (3,1,3)        110: (1,2,1,1,2)
   21: (2,2,1)       81: (2,4,1)        117: (1,1,2,2,1)
   22: (2,1,2)       82: (2,3,2)        118: (1,1,2,1,2)
   26: (1,2,2)       84: (2,2,3)        122: (1,1,1,2,2)
   34: (4,2)         85: (2,2,2,1)      130: (6,2)
   36: (3,3)         86: (2,2,1,2)      136: (4,4)
   40: (2,4)         87: (2,2,1,1,1)    138: (4,2,2)
   42: (2,2,2)       88: (2,1,4)        139: (4,2,1,1)
   43: (2,2,1,1)     90: (2,1,2,2)      141: (4,1,2,1)
   45: (2,1,2,1)     91: (2,1,2,1,1)    142: (4,1,1,2)
   46: (2,1,1,2)     93: (2,1,1,2,1)    146: (3,3,2)
   53: (1,2,2,1)     94: (2,1,1,1,2)    147: (3,3,1,1)
   54: (1,2,1,2)     98: (1,4,2)        148: (3,2,3)
   58: (1,1,2,2)    100: (1,3,3)        149: (3,2,2,1)
   69: (4,2,1)      104: (1,2,4)        150: (3,2,1,2)
   70: (4,1,2)      106: (1,2,2,2)      153: (3,1,3,1)
   73: (3,3,1)      107: (1,2,2,1,1)    154: (3,1,2,2)
		

Crossrefs

The version for prime indices is A316438.
The version for binary indices is A335237.
The complement is A335235.
The version with singletons allowed is A335239.
Binary indices are pairwise coprime or a singleton: A087087.
The version counting partitions is 1 + A335240.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!(Length[stc[#]]==1||CoprimeQ@@stc[#])&]

A335237 Numbers whose binary indices are not a singleton nor pairwise coprime.

Original entry on oeis.org

0, 10, 11, 14, 15, 26, 27, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 90, 91, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
    0:       0 ~ {}
   10:    1010 ~ {2,4}
   11:    1011 ~ {1,2,4}
   14:    1110 ~ {2,3,4}
   15:    1111 ~ {1,2,3,4}
   26:   11010 ~ {2,4,5}
   27:   11011 ~ {1,2,4,5}
   30:   11110 ~ {2,3,4,5}
   31:   11111 ~ {1,2,3,4,5}
   34:  100010 ~ {2,6}
   35:  100011 ~ {1,2,6}
   36:  100100 ~ {3,6}
   37:  100101 ~ {1,3,6}
   38:  100110 ~ {2,3,6}
   39:  100111 ~ {1,2,3,6}
   40:  101000 ~ {4,6}
   41:  101001 ~ {1,4,6}
   42:  101010 ~ {2,4,6}
   43:  101011 ~ {1,2,4,6}
   44:  101100 ~ {3,4,6}
		

Crossrefs

The version for prime indices is A316438.
The version for standard compositions is A335236.
Numbers whose binary indices are pairwise coprime or a singleton: A087087.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],!(Length[bpe[#]]==1||CoprimeQ@@bpe[#])&]

Formula

Complement in A001477 of A326675 and A000079.

A353395 Numbers k such that the prime shadow of k equals the product of prime shadows of the prime indices of k.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 26, 31, 33, 41, 51, 55, 58, 59, 67, 78, 83, 85, 86, 93, 94, 109, 123, 126, 127, 130, 146, 148, 155, 157, 158, 165, 174, 177, 179, 187, 191, 196, 201, 202, 205, 211, 241, 244, 249, 255, 258, 274, 277, 278, 282, 283, 284, 286, 290, 295, 298
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
      1: {}         78: {1,2,6}      158: {1,22}
      3: {2}        83: {23}         165: {2,3,5}
      5: {3}        85: {3,7}        174: {1,2,10}
     11: {5}        86: {1,14}       177: {2,17}
     15: {2,3}      93: {2,11}       179: {41}
     17: {7}        94: {1,15}       187: {5,7}
     26: {1,6}     109: {29}         191: {43}
     31: {11}      123: {2,13}       196: {1,1,4,4}
     33: {2,5}     126: {1,2,2,4}    201: {2,19}
     41: {13}      127: {31}         202: {1,26}
     51: {2,7}     130: {1,3,6}      205: {3,13}
     55: {3,5}     146: {1,21}       211: {47}
     58: {1,10}    148: {1,1,12}     241: {53}
     59: {17}      155: {3,11}       244: {1,1,18}
     67: {19}      157: {37}         249: {2,23}
For example, 126 is in the sequence because its prime indices {1,2,2,4} have shadows {1,2,2,3}, with product 12, which is also the prime shadow of 126.
		

Crossrefs

The prime terms are A006450.
The LHS (prime shadow) is A181819, with an inverse A181821.
The RHS (product of shadows) is A353394, first appearances A353397.
This is a ranking of the partitions counted by A353396.
Another related comparison is A353399, counted by A353398.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A324850 lists numbers divisible by the product of their prime indices.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393, counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==red[#]&]

Formula

A181819(a(n)) = A353394(a(n)) = Product_i A181819(A112798(a(n),i)).

A316437 Take the integer partition with Heinz number n, divide all parts by the GCD of the parts, then take the Heinz number of the resulting partition.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 10, 2, 12, 2, 14, 15, 16, 2, 18, 2, 20, 6, 22, 2, 24, 4, 26, 8, 28, 2, 30, 2, 32, 33, 34, 35, 36, 2, 38, 10, 40, 2, 42, 2, 44, 45, 46, 2, 48, 4, 50, 51, 52, 2, 54, 55, 56, 14, 58, 2, 60, 2, 62, 12, 64, 6, 66, 2, 68, 69, 70, 2, 72, 2, 74, 75, 76, 77, 78, 2, 80, 16, 82, 2, 84, 85, 86, 22, 88, 2, 90, 15
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is idempotent, meaning a(a(n)) = a(n) for all n.
All terms belong to A289509.

Crossrefs

Programs

  • Mathematica
    f[n_]:=If[n==1,1,With[{pms=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Times@@Prime/@(pms/GCD@@pms)]];
    Table[f[n],{n,100}]
  • PARI
    A316437(n) = if(1==n,1,my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); factorback(vector(#f~, k, prime(pis[k]/g)^es[k]))); \\ Antti Karttunen, Aug 06 2018

Extensions

More terms from Antti Karttunen, Aug 06 2018
Showing 1-4 of 4 results.