cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A316557 Number of distinct integer averages of subsets of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 3, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 2, 3, 2, 2, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 3, 2, 1, 3, 1, 3, 3, 1, 2, 4, 1, 4, 2, 4, 1, 2, 1, 2, 2, 2, 2, 5, 1, 3, 1, 3, 1, 4, 3, 2, 3, 4, 1, 3, 3, 3, 2, 3, 2, 2, 1, 3, 3, 3, 1, 4, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(78) = 5 distinct integer averages of subsets of (6,2,1) are {1, 2, 3, 4, 6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Union[Mean/@Subsets[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],IntegerQ]],{n,100}]
  • PARI
    up_to = 65537;
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    v056239 = vector(up_to,n,A056239(n));
    A316557(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&(1==denominator(s = v056239[d]/bigomega(d)))&&!mapisdefined(m,s), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 25 2018

Formula

a(n) <= A316314(n). - Antti Karttunen, Sep 25 2018

Extensions

More terms from Antti Karttunen, Sep 25 2018

A319335 Numerator of the average of the averages of all integer partitions of n.

Original entry on oeis.org

1, 3, 11, 31, 187, 131, 247, 1993, 4463, 3635, 395077, 24441, 81149, 10414421, 12868591, 10764151, 61170133, 419426561, 353495183, 3429826973, 29219934899, 5110021867, 142319532929, 606916707064, 87086496509, 4426308633083, 15954910019953, 38414031851849
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The sequence of average averages begins: 1, 3/2, 11/6, 31/15, 187/84, 131/55, 247/100, 1993/770, 4463/1680, 3635/1323.
		

Crossrefs

Denominators are in A319336.

Programs

  • Mathematica
    Table[Numerator[Mean[Mean/@IntegerPartitions[n]]],{n,20}]
  • PARI
    seq(n)={[numerator(poldegree(p)*subst(intformal(p/y)/p, y, 1)) | p <- Vec(-1+1/prod(k=1, n, 1 - x^k*y + O(x*x^n)))]} \\ Andrew Howroyd, Sep 19 2018

A319336 Denominator of the average of the averages of all integer partitions of n.

Original entry on oeis.org

1, 2, 6, 15, 84, 55, 100, 770, 1680, 1323, 141120, 8470, 27720, 3474900, 4228224, 3468465, 19459440, 131030900, 109156320, 1042578108, 8779605120, 1514663280, 41736380400, 175685635125, 24960905112, 1254125149200, 4476730258000, 10664476594200, 73326164511600
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The sequence of average averages begins: 1, 3/2, 11/6, 31/15, 187/84, 131/55, 247/100, 1993/770, 4463/1680, 3635/1323.
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Mean[Mean/@IntegerPartitions[n]]],{n,20}]
  • PARI
    seq(n)={[denominator(poldegree(p)*subst(intformal(p/y)/p, y, 1)) | p <- Vec(-1+1/prod(k=1, n, 1 - x^k*y + O(x*x^n)))]} \\ Andrew Howroyd, Sep 19 2018

A316465 Heinz numbers of integer partitions such that every nonempty submultiset has an integer average.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 29, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 79, 81, 82, 83, 85, 87, 89, 91, 94, 97, 101, 103, 107, 109, 110, 111, 113, 115, 118, 121, 125, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Supersequence of A000961. - David A. Corneth, Jul 06 2018

Examples

			Sequence of partitions begins (), (1), (2), (1,1), (3), (4), (1,1,1), (2,2), (3,1), (5), (6), (1,1,1,1), (7), (8), (4,2), (5,1), (9), (3,3), (2,2,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],And@@IntegerQ/@Mean/@Union[Rest[Subsets[If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]&]
Showing 1-4 of 4 results.