cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A316475 Number of locally stable rooted trees with n nodes, meaning no branch is a submultiset of any other (unequal) branch of the same root.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 14, 25, 50, 101, 207, 426, 902, 1917, 4108, 8887, 19335, 42330, 93130, 205894, 456960, 1018098, 2275613, 5102248, 11471107, 25856413
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Examples

			The a(6) = 7 locally stable rooted trees:
(((((o)))))
((((oo))))
(((ooo)))
(((o)(o)))
((oooo))
((o)((o)))
(ooooo)
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],Select[Tuples[#,2],UnsameQ@@#&&submultisetQ@@#&]=={}&]];
    Table[Length[strut[n]],{n,15}]

Extensions

a(21)-a(26) from Robert Price, Sep 13 2018

A306200 Number of unlabeled rooted semi-identity trees with n nodes.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 18, 41, 98, 237, 591, 1488, 3805, 9820, 25593, 67184, 177604, 472177, 1261998, 3388434, 9136019, 24724904, 67141940, 182892368, 499608724, 1368340326, 3756651116, 10336434585, 28499309291, 78727891420, 217870037932, 603934911859, 1676720329410
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(7) = 8 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((o(oo)))
                                     ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 0, b(n-1$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 29 2019
  • Mathematica
    ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[ursit[n]],{n,10}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
         Sum[b[n - i*j, i - 1]*Binomial[a[i], j], {j, 0, n/i}]];
    a[n_] := If[n == 0, 0, b[n - 1, n - 1]];
    a /@ Range[0, 35] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jan 29 2019

A316471 Number of locally disjoint rooted identity trees with n nodes, meaning no branch overlaps any other branch of the same root.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 43, 89, 185, 391, 840, 1822, 3975, 8727, 19280, 42841, 95661, 214490
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Examples

			The a(7) = 11 locally disjoint rooted identity trees:
((((((o))))))
((((o(o)))))
(((o((o)))))
((o(((o)))))
((o(o(o))))
(((o)((o))))
(o((((o)))))
(o((o(o))))
(o(o((o))))
((o)(((o))))
(o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@#&&Select[Tuples[#,2],UnsameQ@@#&&(Intersection@@#=!={})&]=={}&]];
    Table[Length[strut[n]],{n,20}]

A316467 Matula-Goebel numbers of locally stable rooted identity trees, meaning no branch is a subset of any other branch of the same root.

Original entry on oeis.org

1, 2, 3, 5, 11, 15, 31, 33, 47, 55, 93, 127, 137, 141, 155, 165, 211, 257, 341, 381, 411, 465, 487, 633, 635, 709, 771, 773, 811, 907, 977, 1023, 1055, 1285, 1297, 1397, 1457, 1461, 1507, 1621, 1705, 1905, 2127, 2293, 2319, 2321, 2433, 2621, 2721, 2833, 2931
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number belongs to this sequence iff it is squarefree, its distinct prime indices are pairwise indivisible, and its prime indices also belong to this sequence.

Examples

			165 = prime(2)*prime(3)*prime(5) belongs to the sequence because it is squarefree, the indices {2,3,5} are pairwise indivisible, and each of them already belongs to the sequence.
Sequence of locally stable rooted identity trees preceded by their Matula-Goebel numbers begins:
    1: o
    2: (o)
    3: ((o))
    5: (((o)))
   11: ((((o))))
   15: ((o)((o)))
   31: (((((o)))))
   33: ((o)(((o))))
   47: (((o)((o))))
   55: (((o))(((o))))
   93: ((o)((((o)))))
  127: ((((((o))))))
  137: (((o)(((o)))))
  141: ((o)((o)((o))))
  155: (((o))((((o)))))
  165: ((o)((o))(((o))))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ain[n_]:=And[Select[Tuples[primeMS[n],2],UnsameQ@@#&&Divisible@@#&]=={},SquareFreeQ[n],And@@ain/@primeMS[n]];
    Select[Range[100],ain]

A316494 Matula-Goebel numbers of locally disjoint rooted identity trees, meaning no branch overlaps any other branch of the same root.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 41, 47, 55, 58, 62, 66, 79, 82, 93, 94, 101, 109, 110, 113, 123, 127, 137, 141, 143, 145, 155, 158, 165, 179, 186, 202, 205, 211, 218, 226, 246, 254, 257, 271, 274, 282, 286, 290, 293, 310, 317, 327, 330
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff either it is equal to 1, it is a prime number whose prime index already belongs to the sequence, or its prime indices are pairwise coprime, distinct, and already belong to the sequence.

Examples

			The sequence of all locally disjoint rooted identity trees preceded by their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   6: (o(o))
  10: (o((o)))
  11: ((((o))))
  13: ((o(o)))
  15: ((o)((o)))
  22: (o(((o))))
  26: (o(o(o)))
  29: ((o((o))))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Or[#==1,And[SquareFreeQ[#],Or[PrimeQ[#],CoprimeQ@@primeMS[#]],And@@#0/@primeMS[#]]]&]

A316500 Number of unlabeled rooted identity trees with n nodes in which the branches of any node with more than one branch have empty intersection.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 22, 46, 96, 205, 442, 976, 2146, 4789, 10719, 24202, 54841, 124967, 285724, 656011, 1510929, 3491151, 8088692, 18790084
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Examples

			The a(7) = 11 rooted identity trees:
  ((((((o))))))
  ((((o(o)))))
  (((o((o)))))
  ((o(((o)))))
  ((o(o(o))))
  (((o)((o))))
  (o((((o)))))
  (o((o(o))))
  (o(o((o))))
  ((o)(((o))))
  (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@#&&Or[Length[#]==1,Intersection@@#=={}]&]];
    Table[Length[strut[n]],{n,20}]

A316469 Matula-Goebel numbers of unlabeled rooted identity RPMG-trees, meaning the Matula-Goebel numbers of the branches of any non-leaf node are relatively prime.

Original entry on oeis.org

1, 2, 6, 26, 78, 202, 606, 794, 2382, 2462, 2626, 7386, 7878, 8914, 10322, 12178, 26742, 30966, 32006, 36534, 42374, 43954, 47206, 80194, 96018, 115882, 127122, 131862, 141618, 149782, 158314, 160978, 184622, 217058, 240582, 248662, 260422, 347646, 449346
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff it is 1 or its prime indices are distinct, relatively prime, and already belong to the sequence.

Examples

			78 = prime(1)*prime(2)*prime(6) belongs to the sequence because the indices {1,2,6} are relatively prime, distinct, and already belong to the sequence.
The sequence of all identity RPMG-trees preceded by their Matula-Goebel numbers begins:
     1: o
     2: (o)
     6: (o(o))
    26: (o(o(o)))
    78: (o(o)(o(o)))
   202: (o(o(o(o))))
   606: (o(o)(o(o(o))))
   794: (o(o(o)(o(o))))
  2382: (o(o)(o(o)(o(o))))
  2462: (o(o(o(o(o)))))
  2626: (o(o(o))(o(o(o))))
  7386: (o(o)(o(o(o(o)))))
  7878: (o(o)(o(o))(o(o(o))))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Or[#==1,And[SquareFreeQ[#],GCD@@primeMS[#]==1,And@@#0/@primeMS[#]]]&]

A316766 Number of series-reduced locally stable rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 30, 72, 180, 458, 1194, 3160, 8459, 22881, 62417, 171526, 474405, 1319395, 3687711, 10352696, 29178988
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(6) = 13 trees:
6,
(15),
(1(14)),
(1(1(13))),
(1(1(1(12)))),
(1(23)), (2(13)), (3(12)), (123),
(1(2(12))), (2(1(12))), (12(12)),
(24).
Example of non-stable trees are ((12)(123)) and ((12)(12(12))).
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,stableQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(18)-a(21) from Robert Price, Sep 14 2018
Showing 1-8 of 8 results.