A316666 Number of simple relaxed compacted binary trees of right height at most one with no sequences on level 1 and no final sequences on level 0.
1, 0, 1, 3, 15, 87, 597, 4701, 41787, 413691, 4512993, 53779833, 695000919, 9680369943, 144560191149, 2303928046437, 39031251610227, 700394126116851, 13270625547477177, 264748979672169681, 5547121478845459983, 121784530649198053263, 2795749225338111831429, 66981491857058929294653
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..448
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
Crossrefs
Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288953 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3*Exp(-x) + x-2)/(1-x)^2 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 12 2018 -
Maple
aseq := n-> 3*round((n+2)*n!/exp(1))-(n+2)*n!: bseq := n-> (n+2)*n!- 2* round((n+2)*n!/exp(1)): s := (a,b,n)-> a*aseq(n) + b*bseq( n): seq(s(1,0,n),n = 0..20); # Gary Detlefs, Dec 11 2018
-
Mathematica
terms = 24; CoefficientList[(3E^-z+z-2)/(1-z)^2 + O[z]^terms, z] Range[0, terms-1]! (* Jean-François Alcover, Sep 14 2018 *)
-
PARI
Vec(serlaplace((3*exp(-x + O(x^25)) + x - 2)/(1 - x)^2)) \\ Andrew Howroyd, Jul 10 2018
Formula
E.g.f.: (3*exp(-z)+z-2)/(1-z)^2.
a(n) ~ (3*exp(-1) - 1) * n * n!. - Vaclav Kotesovec, Jul 12 2018
a(n) = 3*round((n+2)*n!/e) - (n+2)*n!. - Gary Detlefs, Dec 11 2018
From Seiichi Manyama, Apr 25 2025: (Start)
a(n) = 3 * A000255(n) - n! - (n+1)!.
a(0) = 1, a(1) = 0; a(n) = n*a(n-1) + (n-1)*a(n-2). (End)
Comments