A102437 Let pi be an unrestricted partition of n with the summands written in binary notation. a(n) is the number of such partitions whose binary representation has an odd number of binary ones.
0, 1, 1, 1, 3, 3, 5, 9, 10, 14, 22, 28, 37, 53, 66, 85, 120, 147, 188, 252, 308, 394, 509, 621, 783, 990, 1210, 1500, 1872, 2272, 2793, 3447, 4152, 5064, 6184, 7414, 8984, 10856, 12964, 15592, 18711, 22250, 26576, 31690, 37520, 44565, 52856, 62292
Offset: 0
Keywords
Examples
a(5) = 3 because there are 3 partitions of 5 with an odd number of binary ones in their binary representation, namely: 11+10, 10+10+1 and 1+1+1+1+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
p:= proc(n) option remember; local c, m; c:= 0; m:= n; while m>0 do c:= c +irem(m, 2, 'm') od; c end: b:= proc(n, i, t) option remember; if n<0 then 0 elif n=0 then t elif i=0 then 0 else b(n, i-1, t) +b(n-i, i, irem(p(i)+t, 2)) fi end: a:= n-> b(n, n, 0): seq(a(n), n=0..60); # Alois P. Heinz, Feb 21 2011
-
Mathematica
Table[Length[Select[Map[Apply[Join,#]&,Map[IntegerDigits[#,2]&,Partitions[n]]],OddQ[Count[#,1]]&]],{n,0,40}] (* Geoffrey Critzer, Sep 28 2013 *)
-
PARI
seq(n)={apply(t->polcoeff(lift(t), 1), Vec(prod(i=1, n, 1/(1 - x^i*Mod( y^hammingweight(i), y^2-1 )) + O(x*x^n))))} \\ Andrew Howroyd, Jul 20 2018
Extensions
More terms from Vladeta Jovovic, Feb 23 2005