A317057 a(n) is the number of time-dependent assembly trees satisfying the connected gluing rule for a cycle on n vertices.
1, 1, 4, 23, 166, 1437, 14512, 167491, 2174746, 31374953, 497909380, 8619976719, 161667969646, 3265326093109, 70663046421208, 1631123626335707, 40004637435452866, 1038860856732399105, 28476428717448349996
Offset: 1
Links
- M. Bona and A. Vince, The Number of Ways to Assemble a Graph, arXiv preprint arXiv:1204.3842 [math.CO], 2012.
- A. Dougherty, N. Mayers, and R. Short, How to Build a Graph in n Days: Some Variants on Graph Assembly, arXiv preprint arXiv:1807.08079 [math.CO], 2018.
Programs
-
GAP
a:=[1,1];; for n in [3..20] do a[n]:=1+Sum([2..n-1],j->Binomial(n,j)*a[j]); od; a; # Muniru A Asiru, Jul 25 2018
-
Maple
A317057 := proc(n) option remember; if n <=2 then 1; else 1+add(binomial(n,j)*procname(j), j=2..n-1) ; end if; end proc: seq(A317057(n),n=1..30) ; # R. J. Mathar, Aug 08 2018
-
Mathematica
Nest[Function[{a, n}, Append[a, 1 + Sum[Binomial[n, j] a[[j]], {j, 2, n - 1}]]][#, Length@ # + 1] &, {1, 1}, 17] (* Michael De Vlieger, Jul 26 2018 *)
-
PARI
lista(nn) = my(v = vector(nn)); for (n=1, nn, if (n<=2, v[n] = 1, v[n] = 1 + sum(j=2, n-1, binomial(n, j)*v[j]))); v; \\ Michel Marcus, Aug 08 2018
-
Sage
@cached_function def TimeDepenConCycle(n): if (n==1): return 1 elif (n==2): return 1 else: return sum([binomial(n, j)*TimeDepenConCycle(j) for j in range(2, n)])+1 print(','.join(str(TimeDepenConCycle(i)) for i in range(1, 20)))
Formula
a(n) = 1 + Sum_{j = 2..n-1} binomial(n, j)*a(j), a(1) = a(2) = 1.
E.g.f.: (x - x*e^x + e^x - 1)/(2 - e^x).
a(n+1) = Sum_{k = 1..n} Stirling_2(n, k) * A142979(k). - Peter Bala, Dec 09 2024
Comments