cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A142979 a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n+1)^2*a(n).

Original entry on oeis.org

1, 3, 13, 66, 406, 2868, 23220, 210192, 2116656, 23375520, 281792160, 3673814400, 51599514240, 775673176320, 12440524320000, 211848037632000, 3820318338816000, 72685037892096000, 1455838255452672000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 1 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of Mercator's series for the constant log(2). For other cases see A024167 (m = 0), A142980 (m = 2), A142981 (m = 3) and A142982 (m = 4).
The solution to the general recurrence may be expressed as a sum: a(n) = n!*p_m(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p_m(k-1)*p_m(k)), where p_m(x) = Sum_{k = 0..m} 2^k*C(m,k)*C(x,k) = Sum_{k = 0..m} C(m,k)*C(x+k,m), is the Ehrhart polynomial of the m-dimensional cross polytope (the hyperoctahedron).
The first few values are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 2*x^2 + 2*x + 1 and p_3(x) = (4*x^3 + 6*x^2 + 8*x + 3)/3.
The sequence {p_m(k)},k>=0 is the crystal ball sequence for the product lattice A_1 x... x A_1 (m copies). The table of values [p_m(k)]m,k>=0 is the array of Delannoy numbers A008288.
The polynomial p_m(x) is the unique polynomial solution of the difference equation (x + 1)*f(x+1) - x*f(x-1) = (2*m + 1)*f(x), normalized so that f(0) = 1. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis [BUMP et al., Theorems 4 and 6]. The o.g.f. for the p_m(x) is (1 + t)^x/(1 - t)^(x+1) = 1 + (2*x + 1)*t + (2*x^2 + 2*x + 1)*t^2 + ....
The general recurrence in the first paragraph above also has a second solution b(n) = n!*p_m(n) with initial conditions b(1) = 2*m + 1, b(2) = (2*m + 1)^2 + 1.
Hence the behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p_m(k-1)*p_m(k)) = 1/((2*m + 1) + 1^2/((2*m + 1) + 2^2/((2*m + 1) + 3^2/((2*m + 1) + ... + n^2/((2*m + 1) + ...))))) = (-1)^m * (log(2) - (1 - 1/2 + 1/3 - ... + (-1)^(m+1)/m)), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]).
For other sequences defined by similar recurrences and related to log(2) see A142983 and A142988. See also A142992 for the connection between log(2) and the C_n lattices. For corresponding results for the constants e, zeta(2) and zeta(3) see A000522, A142995 and A143003 respectively.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Maple
    p := n -> 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==3,a[n+2]==3a[n+1]+(n+1)^2 a[n]},a,{n,20}] (* Harvey P. Dale, May 20 2012 *)

Formula

a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n + 1.
Recurrence: a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n + 1)^2*a(n).
The sequence b(n):= n!*p(n) satisfies the same recurrence with b(1) = 3, b(2) = 10.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/3)))), for n >= 2.
Limit_{n -> oo} a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/(3 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4k^2 - 1)) = 1 - log(2).
Thus a(n) ~ c*n*n! as n -> oo, where c = 2*(1 - log(2)).
From Peter Bala, Dec 09 2024: (Start)
E.g.f.: A(x) = (2*x - (1 + x)*log(1 + x))/(1 - x)^2 satisfies the differential equation 1 + (x + 3)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0.
Sum_{k = 1..n} Stirling_2(n, k) * a(k) = A317057(n+1). (End)

A005840 Expansion of (1-x)*e^x/(2-e^x).

Original entry on oeis.org

1, 1, 2, 8, 46, 332, 2874, 29024, 334982, 4349492, 62749906, 995818760, 17239953438, 323335939292, 6530652186218, 141326092842416, 3262247252671414, 80009274870905732, 2077721713464798210, 56952857434896699992, 1643312099715631960910
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct resistances possible for n arbitrary resistors each connected in series or parallel with previous ones (cf. A051045).
The n-th term of A051045 uses the n different resistances 1, ..., n ohms, whereas the problem corresponding to A005840 allows arbitrary general resistances a1, a2, ..., an, chosen so as to give the maximum possible number of distinct equivalent resistances - Eric Weisstein
Stanley's Problem 5.4(a) involves threshold graphs; Problem 5.4(c) involves hyperplane arrangements.
a(n) is the number of labeled threshold graphs on n vertices. [This is more specific than the reference to Stanley.] [Svante Janson, Apr 01 2009]
If circuits were allowed that combine complex subcircuits in series or parallel, rather than requiring that one of them consists of a single resistor, then there are more additional possible resistances. For n = 4, there are additional 6 possible values. See illustration in links. - Kival Ngaokrajang, Aug 26 2013 (rephrased by Dave R.M. Langers, Nov 13 2013)
Conjecture: A285868 (with offset 1) shows the associated connected threshold graphs. - R. J. Mathar, Apr 29 2019
Re: above conjecture - the number of connected threshold graphs on n labeled vertices is A317057 (see also A053525). [David Galvin, Oct 18 2021]

Examples

			exp(x)*(1-x)/(2-exp(x)) = 1 + x + x^2 + 4/3*x^3 + 23/12*x^4 + 83/30*x^5 + 479/120*x^6 + 1814/315*x^7 + O(x^8); then the coefficients are multiplied by n! to get 1, 1, 2, 8, 46, 332, 2874, 29024, ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 417.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.4(a).

Crossrefs

2*A053525(n), n>1.

Programs

  • Maple
    A005840 := proc(n) option remember;
    1 - n + add(binomial(n, k) * A005840(k), k = 0..n-1) end:
    seq(A005840(n), n = 0..20); # Peter Luschny, Oct 25 2021
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[(1 - x) Exp[x]/(2 - Exp[x]), {x, 0, nn}], x] (* Harvey P. Dale, Jul 20 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((1-x)*exp(x)/(2-exp(x)))); \\ Michel Marcus, Jan 04 2016

Formula

a(n) ~ n! * (1-log(2)) / (log(2))^(n+1). - Vaclav Kotesovec, Sep 29 2014
E.g.f.: (1 - x) * e^x / (2 - e^x).
E.g.f. A(x) satisfies (1 - x) * A'(x) = A(x) * (A(x) - x). - Michael Somos, Aug 01 2016
a(n+1) = n*(a(n) - a(n-1)) + Sum_{k=0..n} binomial(n, k) * a(k) * a(n-k). - Michael Somos, Aug 01 2016
a(n) = (1-n) + Sum_{k=0..n-1} binomial(n, k) * a(k). - Michael Somos, Aug 01 2016
BINOMIAL transform of A053525. - Michael Somos, Aug 01 2016
a(n) = Sum_{k=1..n-1} (n-k)*A008292(n-1,k-1)*2^k, for n>=2. - Sam Spiro, Sep 22 2019

A317059 a(n) is the number of time-dependent assembly trees satisfying the edge gluing rule for a complete graph on n vertices.

Original entry on oeis.org

1, 1, 3, 21, 255, 4815, 130095, 4763115, 226955925, 13646570175, 1010560060125, 90363456777825, 9599238270346725, 1194935000536101825, 172283712268118826375, 28481473075454845070625, 5351643310498951112521875, 1134140509146174954631081875, 269235074280949277622074328375
Offset: 1

Views

Author

Keywords

Comments

A time-dependent assembly tree for a connected graph G=(V, E) on n vertices is a rooted tree, each node of which is label a subset U of V and a nonnegative integer i such that:
1) each internal node has at least two children,
2) there are leaves labeled (v, 0) for each vertex v in V,
3) the label on the root is (V, m) for 1 <= m <= n-1,
4) for each node (U, i) with i
5) if (U, i) and (U', i') are adjacent nodes with U a subset of U', then i
6) for each 0 <= i <= m, there exists a node (U, i) with U a subset of V.
A time-dependent assembly tree is said to satisfy the edge gluing rule if each internal vertex v of G has exactly two children and if U_1 and U_2 are the labels of the children of internal vertex v, then there is an edge (v_1,v_2) in the edge set of G such that v_1 is in U_1 and v_2 is in U_2.
a(n) is also the number of labeled histories possible for n leaves if simultaneous bifurcations are allowed. a(n) is also the number of single-elimination sports tournament schedules possible for n teams if matches involve pairs of teams, arbitrarily many arenas are available, and labeled teams have been specified, but the bracket of matches has not been specified. - Noah A Rosenberg, Feb 20 2025

Crossrefs

Programs

  • Mathematica
    Nest[Function[{a, n}, Append[a, Sum[(n!/((2^j) j! (n - 2 j)!)) a[[n - j]], {j, Floor[n/2]}]]][#, Length@ # + 1] &, {1, 1}, 17] (* Michael De Vlieger, Jul 26 2018 *)
  • PARI
    lista(nn) = my(v = vector(nn)); for (n=1, nn, if (n<=2, v[n] = 1, v[n] = sum(j=1, n\2, (n!/((2^j)*j!*(n-2*j)!))*v[n-j]))); v; \\ Michel Marcus, Aug 08 2018
  • Sage
    @cached_function
    def TimeDepenEdgeComp(n):
        if n==1:
            return 1
        elif n==2:
            return 1
        else:
            return sum((factorial(n)/((2^j)*factorial(j)*factorial(n-2*j)))*TimeDepenEdgeComp(n-j) for j in range(1, n//2+1))
    print(",".join(str(TimeDepenEdgeComp(i)) for i in range(1, 20)))
    

Formula

a(n) = Sum_{j=1..floor(n/2)}(n!/((2^j)j!(n-2j)!))*a(n-j), a(1)=a(2)=1.

A317060 a(n) is the number of time-dependent assembly trees satisfying the edge gluing rule for a cycle on n vertices.

Original entry on oeis.org

1, 1, 3, 14, 85, 642, 5782, 60484, 720495, 9627210, 142583430, 2318126196, 41042117558, 786002475244, 16189215818220, 356847596226840, 8381418010559225, 208967274455769810, 5511890008010697306
Offset: 1

Author

Keywords

Comments

A time-dependent assembly tree for a connected graph G=(V, E) on n vertices is a rooted tree, each node of which is label a subset U of V and a nonnegative integer i such that:
1) each internal node has at least two children,
2) there are leaves labeled (v, 0) for each vertex v in V,
3) the label on the root is (V, m) for 1 <= m <= n-1,
4) for each node (U, i) with i < m, U is the union of the {u} for the children (u, 0) of (U, i),
5) if (U, i) and (U', i') are adjacent nodes with U a subset of U', then i
6) for each 0 <= i <= m, there exists a node (U, i) with U a subset of V.
A time-dependent assembly tree is said to satisfy the edge gluing rule if each internal vertex v of G has exactly two children and if U_1 and U_2 are the labels of the children of internal vertex v, then there is an edge (v_1,v_2) in the edge set of G such that v_1 is in U_1 and v_2 is in U_2.

Crossrefs

Programs

  • Mathematica
    Nest[Function[{a, n}, Append[a, Sum[(Binomial[n - j, n - 2 j] + Binomial[n - j - 1, n - 2 j]) a[[n - j]], {j, Floor[n/2]}]]][#, Length@ # + 1] &, {1, 1}, 17] (* Michael De Vlieger, Jul 26 2018 *)
  • PARI
    lista(nn) = my(v = vector(nn)); for (n=1, nn, if (n<=2, v[n] = 1, v[n] = sum(j=1, n\2, (binomial(n-j, n-2*j)+binomial(n-j-1,n-2*j))*v[n-j]))); v; \\ Michel Marcus, Aug 08 2018
  • Sage
    @cached_function
    def TimeDepenEdgeCyc(n):
        if n==1:
            return 1
        elif n==2:
            return 1
        else:
            return sum((binomial(n-j,n-2*j)+binomial(n-j-1, n-2*j))*TimeDepenEdgeCyc(n-j) for j in range(1, (n//2)+1))
    print(','.join(str(TimeDepenEdgeCyc(i)) for i in range(1, 20)))
    

Formula

a(n) = Sum_{j=1..floor(n/2)}(binomial(n-j, n-2j)+binomial(n-j-1,n-2j))*a(n-j), a(1)=a(2)=1.

A348436 Triangle read by rows. T(n,k) is the number of labeled threshold graphs on n vertices with k components, for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 23, 16, 6, 1, 166, 115, 40, 10, 1, 1437, 996, 345, 80, 15, 1, 14512, 10059, 3486, 805, 140, 21, 1, 167491, 116096, 40236, 9296, 1610, 224, 28, 1, 2174746, 1507419, 522432, 120708, 20916, 2898, 336, 36, 1, 31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1
Offset: 1

Author

David Galvin, Oct 18 2021

Keywords

Comments

The class of threshold graphs is the smallest class of graphs that includes K1 and is closed under adding isolated vertices and dominating vertices.

Examples

			Triangle begins:
         1;
         1,        1;
         4,        3,       1;
        23,       16,       6,       1;
       166,      115,      40,      10,      1;
      1437,      996,     345,      80,     15,     1;
     14512,    10059,    3486,     805,    140,    21,    1;
    167491,   116096,   40236,    9296,   1610,   224,   28,   1;
   2174746,  1507419,  522432,  120708,  20916,  2898,  336,  36,  1;
  31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1;
...
		

Crossrefs

Cf. A005840 (row sums), A317057 (column k=1), A053525.

Programs

  • Maple
    T := (n, k) -> `if`(n = k, 1, binomial(n, k-1)*A053525(n-k+1)):
    for n from 1 to 10 do seq(T(n, k), k=1..n) od; # Peter Luschny, Oct 24 2021
  • Mathematica
    eulerian[0, 0] := 1; eulerian[n_, m_] := eulerian[n, m] =
    Sum[((-1)^k)*Binomial[n + 1, k]*((m + 1 - k)^n), {k, 0, m + 1}];
    (* t[n] counts the labeled threshold graphs on n vertices *)
    t[0] = 1; t[1] = 1;
    t[n_] := t[n] = Sum[(n - k)*eulerian[n - 1, k - 1]*(2^k), {k, 1, n - 1}];
    T[1, 1] := 1; T[n_, 1] := T[n, 1] = (1/2)*t[n]; T[n_, n_] := T[n, n] = 1;
    T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten

Formula

T(1,1) = 1; for n >= 2, T(n,1) = A005840(n)/2; for n >= 3 and 2 <= k <= n-1, T(n,k) = binomial(n,k-1)*T(n-k+1,1); and for n >= 2, T(n,n)=1.
T(n, k) = binomial(n, k-1)*A053525(n - k + 1) if k != n, otherwise 1. - Peter Luschny, Oct 24 2021
Showing 1-5 of 5 results.