A016031
De Bruijn's sequence: 2^(2^(n-1) - n): number of ways of arranging 2^n bits in circle so all 2^n consecutive strings of length n are distinct.
Original entry on oeis.org
1, 1, 2, 16, 2048, 67108864, 144115188075855872, 1329227995784915872903807060280344576, 226156424291633194186662080095093570025917938800079226639565593765455331328
Offset: 1
- Jonathan L. Gross and Jay Yellen, eds., Handbook of Graph Theory, CRC Press, 2004, p. 255.
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973, p. 31.
- D. J. Newman, "A variation of the Game of Twenty Question", in: Murray S. Klamkin (ed.), Problems in Applied Mathematics, Philadelphia, PA: SIAM, 1990, Problem 66-20, pp. 121-122.
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Cor. 5.6.15.
- Ian Stewart, Game, Set and Math, pp. 50, Penguin 1991.
- Vincenzo Librandi, Table of n, a(n) for n = 1..12
- CombOS - Combinatorial Object Server, Generate de Bruijn sequences.
- Robert Erra, Nik Lygeros and Nigel Stewart, On Minimal Strings Containing the Elements of S(n) by Decimation, Proceedings AA (DM-CCG), 2001, Section 5.4.
- Loïc Foissy, Hopf algebraic structures on hypergraphs and multi-complexes, arXiv:2304.00810 [math.CO], 2023.
- Francisco J. Muñoz and Juan Carlos Nuño, Rule-based Generation of de Bruijn Sequences: Memory and Learning, arXiv:2507.09764 [cs.FL], 2025. See p. 9.
- Wikipedia, De Bruijn sequence.
A053525
Expansion of e.g.f.: (1-x)/(2-exp(x)).
Original entry on oeis.org
1, 0, 1, 4, 23, 166, 1437, 14512, 167491, 2174746, 31374953, 497909380, 8619976719, 161667969646, 3265326093109, 70663046421208, 1631123626335707, 40004637435452866, 1038860856732399105, 28476428717448349996, 821656049857815980455
Offset: 0
G.f. = 1 + x^2 + 4*x^3 + 23*x^4 + 166*x^5 + 1437*x^6 + 14512*x^7 + ...
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.4(a).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Jean-Christophe Aval, Adrien Boussicault, and Philippe Nadeau, Tree-like Tableaux, Electronic Journal of Combinatorics, 20(4), 2013, #P34.
- Venkatesan Guruswami, Enumerative aspects of certain subclasses of perfect graphs, Discrete Math. 205 (1999), 97-117. See Th. 6.3.
- Sam Spiro, Counting Threshold Graphs with Eulerian Numbers, arXiv:1909.06518 [math.CO], 2019.
- Sam Spiro, Subset Parking Functions, arXiv:1909.10109 [math.CO], 2019.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)/(2-Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Mar 15 2019
-
A053525 := proc(n) option remember;
`if`(n < 2, 1 - n, add(binomial(n, k) * A053525(k), k = 0..n-1)) end:
seq(A053525(n), n = 0..20); # Peter Luschny, Oct 24 2021
-
With[{nn=20},CoefficientList[Series[(1-x)/(2-Exp[x]),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, May 17 2012 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( (1 - x) / (2 - exp(x + x*O(x^n))), n))}; /* Michael Somos, Aug 01 2016 */
-
m = 25; T = taylor((1-x)/(2-exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Mar 15 2019
A005612
Number of Boolean functions of n variables that are variously called "unate cascades" or "1-decision list functions" or "read-once threshold functions".
Original entry on oeis.org
2, 8, 64, 736, 10624, 183936, 3715072, 85755392, 2226939904, 64255903744, 2039436820480, 70614849282048, 2648768014680064, 106998205418995712, 4630973410260287488, 213794635951073787904, 10486975675879356104704
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Herman Jamke and Robert Israel, Table of n, a(n) for n = 1..350 (n = 1..22 from Herman Jamke)
- E. A. Bender and J. T. Butler, Asymptotic approximations for the number of fanout-free functions, IEEE Trans. Computers, 27 (1978), 1180-1183. (Annotated scanned copy)
- Aniruddha Biswas and Palash Sarkar, Counting unate and balanced monotone Boolean functions, arXiv:2304.14069 [math.CO], 2023.
- J. T. Butler, Letter to N. J. A. Sloane, Dec. 1978.
- Thomas Eiter, Toshihide Ibaraki and Kazuhisa Makino, Decision lists and related Boolean functions, Theoretical Computer Science 270 (2002), 493-524.
- A. S. Jarraha, B. Raposab and R. Laubenbachera, Nested canalyzing, unate cascade and polynomial functions, Physica D: Nonlinear Phenomena Volume 233, Issue 2, 15 September 2007, 167-174.
- T. Sasao and K. Kinoshita, On the Number of Fanout-Free Functions and Unate Cascade Functions, IEEE Transactions on Computers, Volume C-28, Issue 1 (1979), 66-72.
- Index entries for sequences related to Boolean functions
See also sequence
A005840, which is
A005612 divided by 2^n. These are the monotone functions of the kind enumerated in the present sequence.
-
egf:= (2-4*x)/(2-exp(2*x))+2*x-2:
S:=series(egf,x,31):
seq(j! *coeff(S,x,j), j=1..30); # Robert Israel, Jul 07 2015
-
p[0] = 1; p[n_] := p[n] = Sum[Binomial[n, k]*p[n-k], {k, 1, n}]; a[n_] := a[n] = 2^(n+1)*(p[n] - n*p[n-1]); a[1] = 2; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Aug 01 2011, after formula *)
-
a(n)=if(n<0, 0, n!*polcoeff(subst((2-4*y)/(2-exp(2*y))+2*y-2, y, x+x*O(x^n)), n)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Better description, comments, formulas and a new reference from
Don Knuth, Sep 22 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
A051045
Number of distinct resistances possible for n resistors with resistances 1, 2, ..., n, each connected in series or parallel to the previous one.
Original entry on oeis.org
1, 2, 8, 44, 298, 2350, 22774, 252079, 3154451
Offset: 1
A376544
a(n) is the number of singleton commuting ordered set partitions.
Original entry on oeis.org
1, 1, 2, 8, 40, 242, 1784, 15374, 151008, 1669010, 20503768, 277049126, 4083693200, 65211041690, 1121435565384, 20662801363790, 406100030507200, 8480197575505442, 187500501495191480, 4376026842424336886, 107506303414618515696, 2773174380946415844266
Offset: 0
a(2) = 2 because the ordered set partitions 1|2 and 2|1 are counted only once.
a(3) = 8, all ordered set partitions with length 3 (e.g. 1|2|3) are counted only once.
a(4) = 40 counts 1|34|2 separately to 2|34|1, but treats 1|2|34 as the same as 2|1|34 since only adjacent singletons can commute.
- Alois P. Heinz, Table of n, a(n) for n = 0..435
- Vladimir Grujić, Counting faces of graphical zonotopes, Ars Math. Contemp., 13(1), 2017; arXiv preprint, arXiv:1604.06931 [math.CO], 2017.
- Raul Penaguiao, The kernel of chromatic quasisymmetric functions on graphs and hypergraphic polytopes, Journal of Combinatorial Theory, Series A, 175, 105258, 2020.
Corresponds to a subset of elements counted in
A000670.
-
b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
b(n-j, 0)*binomial(n, j)/p!, j=2..n)+b(n-1, p+1)*n)
end:
a:= n-> b(n, 0):
seq(a(n), n=0..21); # Alois P. Heinz, Nov 19 2024
-
\\ here B(n,k) is A008299 or A358623.
B(n, k) = {sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); }
a(n)={sum(k=0, n, binomial(n,k)*sum(j=0, k\2, B(k,j)*j!*(j+1)^(n-k)))} \\ Andrew Howroyd, Sep 27 2024
-
seq(n)=my(g=exp(x + O(x*x^n))); Vec(serlaplace(g/(1 - g*(g-x-1)))) \\ Andrew Howroyd, Sep 27 2024
A123750
Number of distinct resistances possible with at most n arbitrary resistors connected in series or in parallel.
Original entry on oeis.org
1, 4, 17, 94, 667, 5752, 58053, 669970, 8698991, 125499820, 1991637529, 34479906886, 646671878595, 13061304372448, 282652185684845, 6524494505342842, 160018549741811479, 4155443426929596436, 113905714869793400001, 3286624199431263921838
Offset: 1
I. N. Galidakis (jgal(AT)ath.forthnet.gr), Nov 28 2006
-
a:= n-> n!* coeff(series(exp(x)*(-2*exp(x) +
exp(x)*x + 2)/(-2 + exp(x)), x, n+1),x,n):
seq(a(n), n=1..25);
A232005
Number of distinct resistances that can be produced from a circuit of resistors with resistances 1, 2, ..., n using only series and parallel combinations.
Original entry on oeis.org
1, 2, 8, 48, 386, 3781, 49475, 762869, 13554897, 266817541
Offset: 1
a(2) = 2 since given a 1-ohm and a 2-ohm resistor, a series circuit yields 3 ohms, while a parallel circuit yields 2/3 ohms, which thus yields two distinct resistances.
A348436
Triangle read by rows. T(n,k) is the number of labeled threshold graphs on n vertices with k components, for 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 23, 16, 6, 1, 166, 115, 40, 10, 1, 1437, 996, 345, 80, 15, 1, 14512, 10059, 3486, 805, 140, 21, 1, 167491, 116096, 40236, 9296, 1610, 224, 28, 1, 2174746, 1507419, 522432, 120708, 20916, 2898, 336, 36, 1, 31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1
Offset: 1
Triangle begins:
1;
1, 1;
4, 3, 1;
23, 16, 6, 1;
166, 115, 40, 10, 1;
1437, 996, 345, 80, 15, 1;
14512, 10059, 3486, 805, 140, 21, 1;
167491, 116096, 40236, 9296, 1610, 224, 28, 1;
2174746, 1507419, 522432, 120708, 20916, 2898, 336, 36, 1;
31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1;
...
-
T := (n, k) -> `if`(n = k, 1, binomial(n, k-1)*A053525(n-k+1)):
for n from 1 to 10 do seq(T(n, k), k=1..n) od; # Peter Luschny, Oct 24 2021
-
eulerian[0, 0] := 1; eulerian[n_, m_] := eulerian[n, m] =
Sum[((-1)^k)*Binomial[n + 1, k]*((m + 1 - k)^n), {k, 0, m + 1}];
(* t[n] counts the labeled threshold graphs on n vertices *)
t[0] = 1; t[1] = 1;
t[n_] := t[n] = Sum[(n - k)*eulerian[n - 1, k - 1]*(2^k), {k, 1, n - 1}];
T[1, 1] := 1; T[n_, 1] := T[n, 1] = (1/2)*t[n]; T[n_, n_] := T[n, n] = 1;
T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
A350060
Triangle read by rows: T(n,k) is the number of labeled threshold graphs on vertex set [n] in which k dominating vertices are added in standard iterative construction, n >= 1 and 0 <= k <= n-1.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 22, 22, 1, 1, 65, 200, 65, 1, 1, 171, 1265, 1265, 171, 1, 1, 420, 6566, 15050, 6566, 420, 1, 1, 988, 30156, 136346, 136346, 30156, 988, 1, 1, 2259, 127632, 1039878, 2009952, 1039878, 127632, 2259, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 22, 22, 1;
1, 65, 200, 65, 1;
1, 171, 1265, 1265, 171, 1;
1, 420, 6566, 15050, 6566, 420, 1;
1, 988, 30156, 136346, 136346, 30156, 988, 1;
1, 2259, 127632, 1039878, 2009952, 1039878, 127632, 2259, 1;
...
-
eulerian[n_,m_] := eulerian[n,m] =
Sum[((-1)^k)*Binomial[n+1,k]*((m+1-k)^n), {k,0,m+1}] (* eulerian[n, m] is an Eulerian number, counting the permutations of [n] with m descents *);
op2[n_,k_] := op2[n,k] =
Sum[(n-j)*eulerian[n-1,j-1]*Binomial[j-1,n-k-1], {j,1,n-1}] (* op2[n,k] counts ordered partitions of [n] with k parts, with first part having size at least 2 *);
T[n_, 0] := T[n, 0] = 1; T[2, 1] = 1; T[2, k_] := T[2, k] = 0;
T[n_, k_] :=
T[n, k] =
Sum[Binomial[n, k + 1]*
op2[k + 1,
l]*(Factorial[l - 1]*StirlingS2[n - k - 1, l - 1] +
Factorial[l]*StirlingS2[n - k - 1, l]) +
Binomial[n, k]*Factorial[l]*
StirlingS2[k, l]*(op2[n - k, l + 1] + op2[n - k, l]), {l, 1,
n}] (* T[n, k] is number of threshold graphs on n vertices with k dominating vertices added in construction*);
Table[T[n, k],{n,1,12},{k,0,n-1}]
Showing 1-9 of 9 results.
Comments