cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005840 Expansion of (1-x)*e^x/(2-e^x).

Original entry on oeis.org

1, 1, 2, 8, 46, 332, 2874, 29024, 334982, 4349492, 62749906, 995818760, 17239953438, 323335939292, 6530652186218, 141326092842416, 3262247252671414, 80009274870905732, 2077721713464798210, 56952857434896699992, 1643312099715631960910
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct resistances possible for n arbitrary resistors each connected in series or parallel with previous ones (cf. A051045).
The n-th term of A051045 uses the n different resistances 1, ..., n ohms, whereas the problem corresponding to A005840 allows arbitrary general resistances a1, a2, ..., an, chosen so as to give the maximum possible number of distinct equivalent resistances - Eric Weisstein
Stanley's Problem 5.4(a) involves threshold graphs; Problem 5.4(c) involves hyperplane arrangements.
a(n) is the number of labeled threshold graphs on n vertices. [This is more specific than the reference to Stanley.] [Svante Janson, Apr 01 2009]
If circuits were allowed that combine complex subcircuits in series or parallel, rather than requiring that one of them consists of a single resistor, then there are more additional possible resistances. For n = 4, there are additional 6 possible values. See illustration in links. - Kival Ngaokrajang, Aug 26 2013 (rephrased by Dave R.M. Langers, Nov 13 2013)
Conjecture: A285868 (with offset 1) shows the associated connected threshold graphs. - R. J. Mathar, Apr 29 2019
Re: above conjecture - the number of connected threshold graphs on n labeled vertices is A317057 (see also A053525). [David Galvin, Oct 18 2021]

Examples

			exp(x)*(1-x)/(2-exp(x)) = 1 + x + x^2 + 4/3*x^3 + 23/12*x^4 + 83/30*x^5 + 479/120*x^6 + 1814/315*x^7 + O(x^8); then the coefficients are multiplied by n! to get 1, 1, 2, 8, 46, 332, 2874, 29024, ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 417.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.4(a).

Crossrefs

2*A053525(n), n>1.

Programs

  • Maple
    A005840 := proc(n) option remember;
    1 - n + add(binomial(n, k) * A005840(k), k = 0..n-1) end:
    seq(A005840(n), n = 0..20); # Peter Luschny, Oct 25 2021
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[(1 - x) Exp[x]/(2 - Exp[x]), {x, 0, nn}], x] (* Harvey P. Dale, Jul 20 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((1-x)*exp(x)/(2-exp(x)))); \\ Michel Marcus, Jan 04 2016

Formula

a(n) ~ n! * (1-log(2)) / (log(2))^(n+1). - Vaclav Kotesovec, Sep 29 2014
E.g.f.: (1 - x) * e^x / (2 - e^x).
E.g.f. A(x) satisfies (1 - x) * A'(x) = A(x) * (A(x) - x). - Michael Somos, Aug 01 2016
a(n+1) = n*(a(n) - a(n-1)) + Sum_{k=0..n} binomial(n, k) * a(k) * a(n-k). - Michael Somos, Aug 01 2016
a(n) = (1-n) + Sum_{k=0..n-1} binomial(n, k) * a(k). - Michael Somos, Aug 01 2016
BINOMIAL transform of A053525. - Michael Somos, Aug 01 2016
a(n) = Sum_{k=1..n-1} (n-k)*A008292(n-1,k-1)*2^k, for n>=2. - Sam Spiro, Sep 22 2019

A123750 Number of distinct resistances possible with at most n arbitrary resistors connected in series or in parallel.

Original entry on oeis.org

1, 4, 17, 94, 667, 5752, 58053, 669970, 8698991, 125499820, 1991637529, 34479906886, 646671878595, 13061304372448, 282652185684845, 6524494505342842, 160018549741811479, 4155443426929596436, 113905714869793400001, 3286624199431263921838
Offset: 1

Views

Author

I. N. Galidakis (jgal(AT)ath.forthnet.gr), Nov 28 2006

Keywords

Comments

The difference between this problem and A005840 and A051045 is the word "at most". In this problem, at most n different resistors are used to generate all possible resistances using in series and in parallel wirings, also including resistances where some of the resistors from the collection 1,2,...,n, are not used.

Crossrefs

Programs

  • Maple
    a:= n-> n!* coeff(series(exp(x)*(-2*exp(x) +
                exp(x)*x + 2)/(-2 + exp(x)), x, n+1),x,n):
    seq(a(n), n=1..25);

Formula

a(n) = 2 * A005840(n) + n - 2, n > 1.
E.g.f.: exp(x)*(-2*exp(x) + exp(x)*x + 2)/(-2 + exp(x)).

A232005 Number of distinct resistances that can be produced from a circuit of resistors with resistances 1, 2, ..., n using only series and parallel combinations.

Original entry on oeis.org

1, 2, 8, 48, 386, 3781, 49475, 762869, 13554897, 266817541
Offset: 1

Views

Author

Dave R.M. Langers, Nov 16 2013

Keywords

Comments

Found by exhaustive search: all configurations of resistors were enumerated, resistances calculated, sorted, and distinct values counted.
This sequence allows any circuits to be combined in series or in parallel (akin A000084); A051045 requires circuits to be combined with a single resistor at a time.
This sequence regards circuits as distinct only if their resistance is different; A006351 regards circuits distinct if their configuration is different, although some may have the same resistance.
This sequence considers resistors with contiguous resistances 1, 2, ..., n; A005840 considers arbitrarily different resistors, while A048211 considers n equal resistances.

Examples

			a(2) = 2 since given a 1-ohm and a 2-ohm resistor, a series circuit yields 3 ohms, while a parallel circuit yields 2/3 ohms, which thus yields two distinct resistances.
		

Crossrefs

Showing 1-3 of 3 results.