cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A047836 "Nullwertzahlen" (or "inverse prime numbers"): n=p1*p2*p3*p4*p5*...*pk, where pi are primes with p1 <= p2 <= p3 <= p4 ...; then p1 = 2 and p1*p2*...*pi >= p(i+1) for all i < k.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 36, 40, 48, 56, 60, 64, 72, 80, 84, 96, 108, 112, 120, 128, 132, 144, 160, 168, 176, 180, 192, 200, 208, 216, 224, 240, 252, 256, 264, 280, 288, 300, 312, 320, 324, 336, 352, 360, 384, 392, 396, 400, 408, 416, 420, 432, 440, 448
Offset: 1

Views

Author

Thomas Kantke (bytes.more(AT)ibm.net)

Keywords

Comments

Start with n and reach 2 by repeatedly either dividing by d where d <= the square root or by adding or subtracting 1. The division steps are free, but adding or subtracting 1 costs 1 point. The "value" of n (A047988) is the smallest cost to reach 2. Sequence gives numbers with value 0.
a(n) is also the length of the largest Dyck path of the symmetric representation of sigma of the n-th number whose symmetric representation of sigma has only one part. For an illustration see A317305. (Cf. A237593.) - Omar E. Pol, Aug 25 2018
This sequence can be defined equivalently as the increasing terms of the set containing 2 and all the integers such that if n is in the set, then all m * n are in the set for all m <= n. - Giuseppe Melfi, Oct 21 2019
The subsequence giving the largest term with k prime factors (k >= 1) starts 2, 4, 12, 132, 17292, 298995972, ... . - Peter Munn, Jun 04 2020

Examples

			Starting at 24 we divide by 3, 2, then 2, reaching 2.
		

Crossrefs

Programs

  • Haskell
    import Data.List.Ordered (union)
    a047836 n = a047836_list !! (n-1)
    a047836_list = f [2] where
       f (x:xs) = x : f (xs `union` map (x *) [2..x])
    -- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
  • Mathematica
    nMax = 100; A174973 = Select[Range[10*nMax], AllTrue[Rest[dd = Divisors[#]] / Most[dd], Function[r, r <= 2]]&]; a[n_] := 2*A174973[[n]]; Array[a, nMax] (* Jean-François Alcover, Nov 10 2016, after Reinhard Zumkeller *)

Formula

a(n) = 2 * A174973(n). - Reinhard Zumkeller, Sep 28 2011
The number of terms <= x is c*x/log(x) + O(x/(log(x))^2), where c = 0.612415..., and a(n) = C*n*log(n*log(n)) + O(n), where C = 1/c = 1.63287... This follows from the formula just above. - Andreas Weingartner, Jun 30 2021

Extensions

More terms from David W. Wilson

A346864 Irregular triangle read by rows in which row n lists the row A014105(n) of A237591, n >= 1.

Original entry on oeis.org

2, 1, 6, 2, 1, 1, 11, 4, 3, 1, 1, 1, 19, 6, 4, 2, 2, 1, 1, 1, 28, 10, 5, 3, 3, 2, 1, 1, 1, 1, 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1, 53, 18, 10, 5, 4, 3, 3, 2, 1, 2, 1, 1, 1, 1, 69, 23, 12, 7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 86, 29, 15, 9, 6, 5, 4, 2, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2021

Keywords

Comments

The characteristic shape of the symmetric representation of sigma(A014105(n)) consists in that in the main diagonal of the diagram the smallest Dyck path has a peak and the largest Dyck path has a valley.
So knowing this characteristic shape we can know if a number is a second hexagonal number (or not) just by looking at the diagram, even ignoring the concept of second hexagonal number.
Therefore we can see a geometric pattern of the distribution of the second hexagonal numbers in the stepped pyramid described in A245092.
T(n,k) is also the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A014105(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A014105(n).
T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th second hexagonal number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th second hexagonal number into exactly k + 1 consecutive parts.
1 together with the first column gives A317186. - Michel Marcus, Jan 12 2025

Examples

			Triangle begins:
   2,  1;
   6,  2,  1, 1;
  11,  4,  3, 1, 1, 1;
  19,  6,  4, 2, 2, 1, 1, 1;
  28, 10,  5, 3, 3, 2, 1, 1, 1, 1;
  40, 13,  7, 5, 3, 2, 2, 2, 1, 1, 1, 1;
  53, 18, 10, 5, 4, 3, 3, 2, 1, 2, 1, 1, 1, 1;
  69, 23, 12, 7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1;
  86, 29, 15, 9, 6, 5, 4, 2, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1;
...
Illustration of initial terms:
Column h gives the n-th second hexagonal number (A014105).
Column S gives the sum of the divisors of the second hexagonal numbers which equals the area (and the number of cells) of the associated diagram.
--------------------------------------------------------------------------------------
  n   h   S   Diagram
--------------------------------------------------------------------------------------
                  _             _                     _                             _
                 | |           | |                   | |                           | |
              _ _|_|           | |                   | |                           | |
  1   3   4  |_ _|1            | |                   | |                           | |
               2               | |                   | |                           | |
                            _ _| |                   | |                           | |
                           |  _ _|                   | |                           | |
                        _ _|_|                       | |                           | |
                       |  _|1                        | |                           | |
              _ _ _ _ _| | 1                         | |                           | |
  2  10  18  |_ _ _ _ _ _|2                          | |                           | |
                   6                          _ _ _ _|_|                           | |
                                             | |                                   | |
                                            _| |                                   | |
                                           |  _|                                   | |
                                        _ _|_|                                     | |
                                    _ _|  _|1                                      | |
                                   |_ _ _|1 1                                      | |
                                   |  3                               _ _ _ _ _ _ _| |
                                   |4                                |    _ _ _ _ _ _|
              _ _ _ _ _ _ _ _ _ _ _|                                 |   |
  3  21  32  |_ _ _ _ _ _ _ _ _ _ _|                              _ _|   |
                       11                                        |       |
                                                                _|    _ _|
                                                               |     |
                                                            _ _|    _|
                                                        _ _|      _|
                                                       |        _|1
                                                  _ _ _|    _ _|1 1
                                                 |         | 2
                                                 |  _ _ _ _|2
                                                 | |   4
                                                 | |
                                                 | |6
                                                 | |
              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4  36  91  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
                               19
.
		

Crossrefs

Row sums give A014105, n >= 1.
Row lengths give A005843.
For the characteristic shape of sigma(A000040(n)) see A346871.
For the characteristic shape of sigma(A000079(n)) see A346872.
For the characteristic shape of sigma(A000217(n)) see A346873.
For the visualization of Mersenne numbers A000225 see A346874.
For the characteristic shape of sigma(A000384(n)) see A346875.
For the characteristic shape of sigma(A000396(n)) see A346876.
For the characteristic shape of sigma(A008588(n)) see A224613.
For the characteristic shape of sigma(A174973(n)) see A317305.

Programs

  • PARI
    row(n) = my(m=n*(2*n + 1)); vector((sqrtint(8*m+1)-1)\2, k, ceil((m+1)/k - (k+1)/2) - ceil((m+1)/(k+1) - (k+2)/2)); \\ Michel Marcus, Jan 12 2025

A317307 Sum of divisors of powers of 2 and sum of divisors of even perfect numbers.

Original entry on oeis.org

1, 3, 7, 12, 15, 31, 56, 63, 127, 255, 511, 992, 1023, 2047, 4095, 8191, 16256, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67100672, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179738112, 17179869183
Offset: 1

Views

Author

Omar E. Pol, Aug 25 2018

Keywords

Comments

Sum of divisors of the numbers k such that the symmetric representation of sigma(k) has only one part, and apart from the central width, the rest of the widths are 1's.
Note that the above definition implies that the central width of the symmetric representation of sigma(k) is 1 or 2. For powers of 2 the central width is 1. For even perfect numbers the central width is 2 (see example).

Examples

			Illustration of initial terms. a(n) is the area (or the number of cells) of the n-th region of the diagram:
.        _ _   _   _   _               _                       _       _
.   1   |_| | | | | | | |             | |                     | |     | |
.   3   |_ _|_| | | | | |             | |                     | |     | |
.        _ _|  _|_| | | |             | |                     | |     | |
.   7   |_ _ _|    _|_| |             | |                     | |     | |
.        _ _ _|  _|  _ _|             | |                     | |     | |
.  12   |_ _ _ _|  _|                 | |                     | |     | |
.        _ _ _ _| |                   | |                     | |     | |
.  15   |_ _ _ _ _|              _ _ _| |                     | |     | |
.                               |  _ _ _|                     | |     | |
.                              _| |                           | |     | |
.                            _|  _|                           | |     | |
.                        _ _|  _|                             | |     | |
.                       |  _ _|                               | |     | |
.                       | |                          _ _ _ _ _| |     | |
.        _ _ _ _ _ _ _ _| |                         |  _ _ _ _ _|     | |
.  31   |_ _ _ _ _ _ _ _ _|                         | |    _ _ _ _ _ _| |
.                                                _ _| |   |  _ _ _ _ _ _|
.                                            _ _|  _ _|   | |
.                                           |    _|    _ _| |
.                                          _|  _|     |  _ _|
.                                         |  _|      _| |
.                                    _ _ _| |      _|  _|
.                                   |  _ _ _|  _ _|  _|
.                                   | |       |  _ _|
.                                   | |  _ _ _| |
.                                   | | |  _ _ _|
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
.   56  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.                                       | |
.                                       | |
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.   63  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma of the numbers A317306: 1, 2, 4, 6, 8, 16, 28, 32, ..., has only one part, and apart from the central width, the rest of the widths are 1's.
		

Crossrefs

Union of nonzero terms of A000225 and A139256.
Odd terms give the nonzeros terms of A000225.
Even terms give A139256.
Subsequence of A317305.
Cf. A249351 (the widths).

Programs

  • Mathematica
    DivisorSigma[1, #] &@ Union[2^Range[0, Floor@ Log2@ Last@ #], #] &@ Array[2^(# - 1) (2^# - 1) &@ MersennePrimeExponent@ # &, 7] (* Michael De Vlieger, Aug 25 2018, after Robert G. Wilson v at A000396 *)

Formula

a(n) = A000203(A317306(n)).

A361208 Number of middle divisors of the n-th number whose divisors increase by a factor of 2 or less.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 1, 2, 2, 3, 2, 2, 2, 1, 2, 2, 4, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 1, 2, 3, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4
Offset: 1

Views

Author

Omar E. Pol, Mar 06 2023

Keywords

Comments

The middle divisors of n are the divisors in the half-open interval [sqrt(n/2), sqrt(n*2)).
Also consider the n-th number k with the property that the symmetric representation of sigma(k) has only one part. a(n) is the number of square cells on the axis of symmetry of the diagram.
For the diagrams related to the first 13 terms of this sequence see A317305.

Crossrefs

Programs

Formula

a(n) = A067742(A174973(n)).
Showing 1-5 of 5 results.