cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A286518 Number of finite connected sets of positive integers greater than one with least common multiple n.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 20, 1, 4, 4, 8, 1, 20, 1, 20, 4, 4, 1, 88, 2, 4, 4, 20, 1, 96, 1, 16, 4, 4, 4, 196, 1, 4, 4, 88, 1, 96, 1, 20, 20, 4, 1, 368, 2, 20, 4, 20, 1, 88, 4, 88, 4, 4, 1, 1824, 1, 4, 20, 32, 4, 96, 1, 20, 4, 96, 1, 1688, 1, 4, 20, 20, 4, 96, 1, 368, 8, 4, 1, 1824, 4, 4, 4, 88, 1, 1824, 4, 20
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Feb 17 2024

Examples

			The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}.
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Rest[Divisors[n]]],zsm[#]==={n}&]],{n,2,20}]
  • PARI
    isconnected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A286518aux(n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==n && isconnected(ss), s++); for(i=from, k, newss = List(ss); listput(newss, parts[i]); s += A286518aux(n, parts, i+1, newss)); (s) };
    A286518(n) = if(1==n, n, A286518aux(n, divisors(n))); \\ Antti Karttunen, Feb 17 2024

Formula

From Antti Karttunen, Feb 17 2024: (Start)
a(n) <= A069626(n).
It seems that a(n) >= A318670(n), for all n > 1.
(End)

Extensions

Term a(1)=1 prepended and more terms added by Antti Karttunen, Feb 17 2024

A069626 Number of sets of integers larger than one whose least common multiple is n.

Original entry on oeis.org

1, 1, 1, 2, 1, 5, 1, 4, 2, 5, 1, 22, 1, 5, 5, 8, 1, 22, 1, 22, 5, 5, 1, 92, 2, 5, 4, 22, 1, 109, 1, 16, 5, 5, 5, 200, 1, 5, 5, 92, 1, 109, 1, 22, 22, 5, 1, 376, 2, 22, 5, 22, 1, 92, 5, 92, 5, 5, 1, 1874, 1, 5, 22, 32, 5, 109, 1, 22, 5, 109, 1, 1696, 1, 5, 22, 22, 5, 109, 1, 376, 8, 5, 1, 1874, 5, 5, 5, 92, 1, 1874, 5, 22
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2002

Keywords

Comments

a(p) = 1, a(p*q) = 5, a(p^2*q) = 13, a(p^3) = 4, a(p^4) = 8 etc. where p and q are primes. It can be shown that a(p^k) = 2^(k-1). Problem: find an expression for a(N) when N = p^a*q^b*r^c*..., p,q,r are primes.

Examples

			a(6) = 5 as there are five such sets of natural numbers larger than one whose least common multiple is six: {6}, {2, 6}, {3, 6}, {2, 3} and {2, 3, 6}.
a(12) = 22 from {12}, {4,3}, {2,4,3}, {4,6}, {2,4,6}, {4,3,6}, {2,4,3,6}, {2,12}, {4,12}, {2,4,12}, {3,12}, {2,3,12}, {4,3,12}, {2,4,3,12}, {6,12}, {2,6,12}, {4,6,12}, {2,4,6,12}, {3,6,12}, {2,3,6,12}, {4,3,6,12}, {2,4,3,6,12}.
From _Antti Karttunen_, Feb 18 2024: (Start)
a(1) = 1 as there is only one set that satisfies the criteria, namely, an empty set {}, whose lcm is 1.
a(2) = 1 as the only set that satisfies the criteria is a singleton set {2}.
(End)
		

Crossrefs

Möbius transform of A100577.
Cf. also A045778 (number of sets of integers > 1 whose product is n).
Cf. A076078.

Programs

  • Haskell
    -- following Vladeta Jovovic's formula.
    a069626 n = sum $
       map (\d -> (a008683 (n `div` d)) * 2 ^ (a000005 d - 1)) $ a027750_row n
    -- Reinhard Zumkeller, Jun 12 2015, Feb 07 2011
    (APL, Dyalog dialect)
    divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
    A069626 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{∧/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (quite taxing on memory) - Antti Karttunen, Feb 18 2024
    
  • Maple
    with(numtheory): seq(add(mobius(n/d)*2^(tau(d)-1), d in divisors(n)), n=1..80); # Ridouane Oudra, Mar 12 2024
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * 2^(DivisorSigma[0, d] - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 92}](* Jean-François Alcover, Nov 30 2011, after Vladeta Jovovic *)
  • PARI
    A069626(n) = sumdiv(n,d,moebius(n/d)*2^(numdiv(d)-1)); \\ Antti Karttunen, Feb 18 2024

Formula

a(n) = Sum_{ d divides n } mu(n/d)*2^(tau(d)-1). - Vladeta Jovovic, Jul 07 2003
a(n) >= A286518, a(n) >= A318670. - Antti Karttunen, Feb 17 2024
a(n) = A076078(n)/2, for n > 1. - Ridouane Oudra, Mar 12 2024

Extensions

Corrected and extended by Naohiro Nomoto, Apr 25 2002
Definition and examples clarified by Antti Karttunen, Feb 18 2024

A317624 Number of integer partitions of n where all parts are > 1 and whose LCM is n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 17, 1, 1, 1, 7, 1, 60, 1, 1, 1, 1, 1, 76, 1, 1, 1, 55, 1, 105, 1, 11, 10, 1, 1, 187, 1, 6, 1, 13, 1, 30, 1, 111, 1, 1, 1, 5043, 1, 1, 15, 1, 1, 230, 1, 17, 1, 242, 1, 4173, 1, 1, 12, 19, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Examples

			The a(20) = 5 partitions are (20), (10,4,4,2), (10,4,2,2,2), (5,5,4,4,2), (5,5,4,2,2,2).
The a(45) = 10 partitions:
  (45),
  (15,15,9,3,3), (15,9,9,9,3),
  (15,9,9,3,3,3,3), (15,9,5,5,5,3,3), (9,9,9,5,5,5,3),
  (15,9,3,3,3,3,3,3,3), (9,9,5,5,5,3,3,3,3), (9,5,5,5,5,5,5,3,3),
  (9,5,5,5,3,3,3,3,3,3,3).
From _David A. Corneth_, Sep 08 2018: (Start)
Let sum(t) denote the sum of elements of a tuple t. The tuples t with distinct divisors of 45 that have lcm(t) = 45 and sum(t) <= 45 are {(45) and (3, 9, 15), (3, 5, 9, 15), (3, 5, 9), (5, 9), (9, 15), (5, 9, 15)}. For each such tuple t, find the number of partitions of 45 - s(t) into distinct parts of t.
For the tuple (45), there is 1 partition of 45 - 45 = 0 into parts with 45. That is: {()}.
For the tuple (3, 9, 15), there are 4 partitions of 45 - (3 + 9 + 15) = 18 into parts with 3, 9 and 15. They are {(3, 15), (9, 9), (3, 3, 3, 9), (3, 3, 3, 3, 3, 3)}.
For the tuple (3, 5, 9), there are 4 partitions of 45 - (3 + 5 + 9) = 28 into parts with 3, 5 and 9; they are {(5, 5, 9, 9), (3, 3, 3, 5, 5, 9), (3, 5, 5, 5, 5, 5), (3, 3, 3, 3, 3, 3, 5, 5)}.
For the tuple (3, 5, 9, 15), there is 1 partition of 45 - (3 + 5 + 9 + 15) = 13 into parts with 3, 5, 9 and 15. That is (3, 5, 5).
The other tuples, (5, 9), (9, 15), and (5, 9, 15); they give no extra tuples. That's because there is no solution to the Diophantine equation for 5x + 9y = 45 - (5 + 9), corresponding to the tuple (5, 9) with nonnegative x, y.
That also excludes (9, 15); if there is a solution for that, there would also be a solution for (5, 9). This could whittle down the number of seeds even further. Similarly, (5, 9, 15) gives no solution.
Therefore a(45) = 1 + 4 + 4 + 1 = 10.
(End)
In general, there are A318670(n) (<= A069626(n)) such seed sets of divisors where to start extending the partition from. (See the second PARI program which uses subroutine toplevel_starting_sets.) - _Antti Karttunen_, Sep 08 2018
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[Min@@#>=2,LCM@@#==n]&]],{n,30}]
  • PARI
    strong_divisors_reversed(n) = vecsort(select(x -> (x>1), divisors(n)), , 4);
    partitions_into_lcm(orgn,n,parts,from=1,m=1) = if(!n,(m==orgn),my(k = #parts, s=0); for(i=from,k,if(parts[i]<=n, s += partitions_into_lcm(orgn,n-parts[i],parts,i,lcm(m,parts[i])))); (s));
    A317624(n) = if(n<=1,0,partitions_into_lcm(n,n,strong_divisors_reversed(n))); \\ Antti Karttunen, Sep 07 2018
    
  • PARI
    strong_divisors_reversed(n) = vecsort(select(x -> (x>1), divisors(n)), , 4);
    partitions_into(n,parts,from=1) = if(!n,1, if(#parts==from, (0==(n%parts[from])), my(s=0); for(i=from,#parts,if(parts[i]<=n, s += partitions_into(n-parts[i],parts,i))); (s)));
    toplevel_starting_sets(orgn,n,parts,from=1,ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==orgn,s += partitions_into(n,ss)); for(i=from,k,if(parts[i]<=n, newss = List(ss); listput(newss,parts[i]); s += toplevel_starting_sets(orgn,n-parts[i],parts,i+1,newss))); (s) };
    A317624(n) = if(n<=1,0,toplevel_starting_sets(n,n,strong_divisors_reversed(n))); \\ Antti Karttunen, Sep 08-10 2018
Showing 1-3 of 3 results.