A319049 Primes p such that none of p - 1, p - 2 and p - 3 are squarefree.
101, 127, 353, 727, 1277, 1423, 1451, 1667, 2153, 2351, 2647, 3187, 3251, 3511, 3701, 3719, 3727, 4421, 4951, 5051, 5393, 5527, 6427, 6653, 6959, 7517, 7867, 8527, 9127, 9551, 9803, 9851, 10243, 10253, 10487, 10831, 11273, 11351, 11777, 11827, 12007, 12251, 12277
Offset: 1
Keywords
Examples
98 = 2*7^2, 99 = 3^2*11 and 100 = 2^2*5^2. So 101 is a term.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p: p in PrimesUpTo(13000) | not IsSquarefree(p-1) and not IsSquarefree(p-2) and not IsSquarefree(p-3)]; // Vincenzo Librandi, Sep 17 2018
-
Maple
Res:= NULL: count:= 0: p:= 1; while count < 100 do p:= nextprime(p); if not ormap(numtheory:-issqrfree, [p-1,p-2,p-3]) then count:= count+1; Res:= Res, p fi od: Res; # Robert Israel, Sep 09 2018
-
Mathematica
Select[Prime[Range[2000]], !SquareFreeQ[# - 1] && !SquareFreeQ[# - 2] && !SquareFreeQ[# - 3]&] (* Jean-François Alcover, Sep 17 2018 *) Select[Prime[Range[1500]],NoneTrue[#-{1,2,3},SquareFreeQ]&] (* Harvey P. Dale, Apr 11 2022 *)
-
PARI
isok(p) = isprime(p) && !issquarefree(p-1) && !issquarefree(p-2) && !issquarefree(p-3); \\ Michel Marcus, Sep 09 2018
Comments